如圖,以邊長為1的正方形ABCO的兩邊OA、OC所在直線為軸建立坐標(biāo)系,點(diǎn)O為原點(diǎn).
(1)求以A為頂點(diǎn),且經(jīng)過點(diǎn)C的拋物線解析式;
(2)求(1)中的拋物線與對(duì)角線OB交于點(diǎn)D的坐標(biāo).
(1)A的坐標(biāo)是(1,0)、C坐標(biāo)是(0,1),設(shè)出解析式是y=a(x-1)2,把C的坐標(biāo)代入得:a(-1)2=1,
解得:a=1,
則拋物線的解析式是:y=(x-1)2;

(2)B的坐標(biāo)是(1,1),
設(shè)OB解析式的解析式是y=kx,則k=1,則OB的解析式是y=x.
根據(jù)題意得:
y=(x-1)2
y=x
,
解得:
x=
3+
5
2
y=
3+
5
2
(舍去),或
x=
3-
5
2
y=
3-
5
2

則D的坐標(biāo)是:(
3-
5
2
,
3-
5
2
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:一次函數(shù)y=-x+m的圖象與二次函數(shù)y=ax2+bx-4的圖象交于x軸上一點(diǎn)A,且交y軸于點(diǎn)B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求一次函數(shù)的解析式;
(2)設(shè)二次函數(shù)y=ax2+bx-4的對(duì)稱軸為直線x=n(n<0),n是方程2x2-3x-2=0的一個(gè)根,求二次函數(shù)的解析式;
(3)在(2)條件下,設(shè)二次函數(shù)交y軸于點(diǎn)D,在x軸上有一點(diǎn)C,使以點(diǎn)A、B、C組成的三角形與△ADB相似.試求出C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知ABCD在平面直角坐標(biāo)系中的位置如圖所示,拋物線y=ax2+bx-5經(jīng)過A、B、C三點(diǎn)且交CD于F,線段AD所在直線的函數(shù)解析式為y=-3x+3.
①求點(diǎn)A、D的坐標(biāo);
②若ABCD的面積為12,求拋物線的函數(shù)解析式;
③在②的條件下,請(qǐng)問拋物線上是否存在點(diǎn)P,使得以CD、CP為鄰邊的平行四邊形的面積是ABCD面積的
1
6
?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設(shè)CD的長為x,四邊形ABCD的面積為y,則y與x之間的函數(shù)關(guān)系式是(  )
A.y=
2
25
x2
B.y=
4
25
x2
C.y=
2
5
x2
D.y=
4
5
x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:以原點(diǎn)O為圓心、5為半徑的半圓與y軸交于A、G兩點(diǎn),AB與半圓相切于點(diǎn)A,點(diǎn)B的坐標(biāo)為(3,yB)(如圖1);過半圓上的點(diǎn)C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于
3
8
xC2
(1)求點(diǎn)C的坐標(biāo);
(2)①命題“如圖2,以y軸為對(duì)稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NPMQ,PQP1Q1,且NP>MQ.設(shè)拋物線y=a0x2+h0過點(diǎn)P、Q,拋物線y=a1x2+h1過點(diǎn)P1、Q1,則h0>h1”是真命題.請(qǐng)你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進(jìn)行驗(yàn)證;
②當(dāng)圖1中的線段BC在第一象限時(shí),作線段BC關(guān)于y軸對(duì)稱的線段FE,連接BF、CE,點(diǎn)T是線段BF上的動(dòng)點(diǎn)(如圖3);設(shè)K是過T、B、C三點(diǎn)的拋物線y=ax2+bx+c的頂點(diǎn),求K的縱坐標(biāo)yK的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,關(guān)于x的二次函數(shù)y=x2-2mx-m-2的圖象與x軸交于A(x1,0)、B(x2,0)兩點(diǎn)(x1<0<x2),與y軸交于C點(diǎn)
(1)當(dāng)m為何值時(shí),AC=BC;
(2)當(dāng)∠BAC=∠BCO時(shí),求這個(gè)二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形ABCD中,AB=2,E是AD邊上一點(diǎn)(點(diǎn)E與點(diǎn)A,D不重合).BE的垂直平分線交AB于M,交DC于N.
(1)設(shè)AE=x,四邊形ADNM的面積為S,寫出S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)AE為何值時(shí),四邊形ADNM的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的長和寬分別為8cm和2cm,C點(diǎn)和M點(diǎn)重合,BC和MN在一條直線上.令Rt△PMN不動(dòng),矩形ABCD沿MN所在直線向右以每秒1cm的速度移動(dòng)(如圖2),直到C點(diǎn)與N點(diǎn)重合為止.設(shè)移動(dòng)x秒后,矩形ABCD與△PMN重疊部分的面積為ycm2.求y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一網(wǎng)球從斜坡的點(diǎn)O拋出,網(wǎng)球的拋物線為y=4x-
1
2
x2
,斜坡OA的坡度i=1:2,則網(wǎng)球在斜坡的落點(diǎn)A的垂直高度是( 。
A.2B.3.5C.7D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案