【題目】如圖,直線y=x+8與x軸交于A點(diǎn),與y軸交于點(diǎn)B,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒2個(gè)單位速度沿射線AO勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿射線BA方向向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)用t的代數(shù)式表示AP= ,AQ=
(2)當(dāng)t為何值時(shí),PQ∥OB?
(3)若點(diǎn)C為平面直角坐標(biāo)系內(nèi)一點(diǎn),是否存在t值,使得以A、P、Q、C為頂點(diǎn)的四邊形為菱形?若存在,求出Q點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】(1),;(2);(3)點(diǎn)的坐標(biāo)為,,.
【解析】
(1)根據(jù)題意,先求出點(diǎn)A和點(diǎn)B的坐標(biāo),得到AB的長(zhǎng)度,根據(jù)路程=速度時(shí)間,即可表示出AP和BQ;
(2)由(1)可知AP和AQ,然后利用平行線分線段成比例,即可求出t的值;
(3)分三種情形列出方程求解:①當(dāng),作,,可得菱形;②當(dāng)時(shí),作,,可得菱形;③當(dāng)時(shí),作,,可得菱形;分別求出點(diǎn)Q的坐標(biāo)即可.
解:(1)根據(jù)題意,令,則,解得;
令時(shí),,
∴,,
∴點(diǎn),;
在中,由勾股定理得,,
∵點(diǎn)的速度是每秒2個(gè)單位,點(diǎn)的速度是每秒1個(gè)單位,
∴,,
故答案為:,;
(2)若,如圖:
∴,
∵,
∴,解得:;
(3)①如圖中,當(dāng),作,,可得菱形.
∵,
∴,
∴.
設(shè)點(diǎn)Q為(,),
∴,
解得:,
∴,
∴此時(shí);
②如圖中,當(dāng)時(shí),作,,可得菱形,連接交于.
∵四邊形是菱形,
∴,,
∵,
∴,
∴,
∴.
與①同理可求點(diǎn)Q的坐標(biāo),
∴此時(shí).
③如圖中,當(dāng)時(shí),作,,可得菱形,連接交于.
∵四邊形是菱形,
∴,,
∵,
∴,
∴,
∴.
與①同理可求點(diǎn)Q的坐標(biāo),
∴此時(shí).
綜上所述,滿足條件的點(diǎn)的坐標(biāo)為:,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y4x4與x軸,y軸分別交于點(diǎn)A,B,點(diǎn)A在拋物線yax2bx3a(a0)上,將點(diǎn)B向右平移3個(gè)單位長(zhǎng)度,得到點(diǎn)C.
(1)拋物線的頂點(diǎn)坐標(biāo)為 (用含a的代數(shù)式表示)
(2)若a1,當(dāng)t-1≤x≤t時(shí),函數(shù)yax2bx3a(a0)的最大值為y1,最小值為y2,且y1y22,求t的值;
(3)若拋物線與線段BC恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,P為BA延長(zhǎng)線上一點(diǎn),過(guò)P作⊙O的切線,切點(diǎn)為C,CD平分∠ACB交⊙O于D,交AB于G.
(1)求證:△PAC∽△PCB;
(2)已知⊙O的半徑為5,PC=2,過(guò)C作CH⊥AB于H.
①求tan∠ADC;
②求GH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(4,0),并且OA=OC=4OB,動(dòng)點(diǎn)P在過(guò)A,B,C三點(diǎn)的拋物線上.
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動(dòng)點(diǎn)G,如圖,當(dāng)點(diǎn)G運(yùn)動(dòng)到某位置時(shí),以AG,AO為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)G的坐標(biāo);
(3)若拋物線上存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形,直接寫出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,點(diǎn)E為AD的中點(diǎn),連接BE、AC,AC⊥BE于點(diǎn)F,連接DF,對(duì)于結(jié)論①CF=2AF②△AEF∽△CAB③DF=DC④tan∠CAD=正確的有_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點(diǎn)F,點(diǎn)E在AB的延長(zhǎng)線上,射線EM經(jīng)過(guò)點(diǎn)C,且∠ACE+∠AFO=180°.
(1)求證:EM是⊙O的切線;
(2)若∠A=∠E,BC=,求陰影部分的面積.(結(jié)果保留和根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為關(guān)注學(xué)生出行安全,調(diào)查了某班學(xué)生出行方式,調(diào)查結(jié)果分為四類:A﹣騎自行車,B﹣步行,C﹣?zhàn)鐓^(qū)巴士,D﹣其它,并將調(diào)査結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖,解答下列問(wèn)題:
(1)本次一共調(diào)査了多少名學(xué)生?
(2)C類女生有 名,D類男生有 名,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若從被調(diào)查的A類和D類學(xué)生中分別隨機(jī)選取一位同學(xué)進(jìn)行進(jìn)一步調(diào)查,請(qǐng)用列表法或畫樹狀圖的方法求出所選同學(xué)中恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)請(qǐng)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2;
(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)(記過(guò)保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
(1)概念理解
如圖1,在四邊形ABCD中,添加一個(gè)條件使得四邊形ABCD是“等鄰邊四邊形”.請(qǐng)寫出你添加的一個(gè)條件.
(2)問(wèn)題探究
①小紅猜想:對(duì)角線互相平分的“等鄰邊四邊形”是菱形.她的猜想正確嗎?請(qǐng)說(shuō)明理由.
②如圖2,小紅畫了一個(gè)Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并將Rt△ABC沿∠ABC的平分線BB'方向平移得到△A'B'C',連結(jié)AA',BC'.小紅要是平移后的四邊形ABC'A'是“等鄰邊四邊形”,應(yīng)平移多少距離(即線段BB'的長(zhǎng))?
(3)應(yīng)用拓展
如圖3,“等鄰邊四邊形”ABCD中,AB=AD,∠BAD+∠BCD==90°,AC,BD為對(duì)角線,AC=AB.試探究BC,CD,BD的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com