【題目】已知一次函數(shù)y=x12的圖象分別交x軸,y軸于A,C兩點。
(1)求出A,C兩點的坐標;
(2)在x軸上找出點B,使△ACB∽△AOC,若拋物線過A,B,C三點,求出此拋物線的解析式;
(3)在(2)的條件下,設動點P、Q分別從A,B兩點同時出發(fā),以相同速度沿AC、BA向C,A運動,連接PQ,設AP=m,是否存在m值,使以A,P,Q為頂點的三角形與△ABC相似?若存在,求出所有m值;若不存在,請說明理由。
【答案】(1)A(16,0),C(0,12);(2);(3)
【解析】
(1)令直線的解析式y=0,可得A的坐標,令x=0,可得C的坐標
(2)要使△ACB∽△AOC,則B點必為過C點且垂直于AC的直線與x軸的交點.那么根據(jù)射影定理不難得出B點的坐標,然后用待定系數(shù)法即可求得拋物線的解析式.
(3)本題可分兩種情況進行求解:①當PQ∥BC時,△APQ∽△ACB;②當PQ⊥AB時,△APQ∽△ACB.可根據(jù)各自得出的不同的對應成比例線段求出m的值.
(1)在一次函數(shù)y=x12中,當x=0時,y=12;
當y=0時,x=16,即A(16,0),C(0,12)
(2)過C作CB⊥AC,交x軸于點B,顯然,點B為所求。
則OC2=OAOB,此時OB=9,可求得B(9,0);
此時經(jīng)過A. B.C三點的拋物線的解析式為y=x2+x12
(3)當PQ∥BC時,如圖(1),△APQ∽△ACB;則有:
=,即=,
解得m=.
當PQ⊥AB時,△APQ∽△ACB;有:
= ,即=,
解得m=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AD=8cm,BC=12cm,M是BC上一點,且BM=9cm,點E從點A出發(fā)以1cm/s的速度向點D運動,點F從點C出發(fā),以3cm/s的速度向點B運動,當其中一點到達終點,另一點也隨之停止,設運動時間為t,則當以A、M、E、F為頂點的四邊形是平行四邊形時,t=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD繞其右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖①位置,繼續(xù)繞右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖②位置,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4,AD=3,則頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路徑總長為( )
A. 2017π B. 2034π C. 3024π D. 3026π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象開口向上,對稱軸為直線x=1,圖象經(jīng)過(3,0),下列結論中,正確的一項是( )
A.abc<0B.2a+b<0C.a-b+c<0D.4ac-b2<0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點O為坐標原點,點A(0,4).△AOB是等邊三角形,點B在第一象限.
(1)如圖①,求點B的坐標;
(2)點P是x軸上的一個動點,連接AP,以點A為旋轉(zhuǎn)中心,把△AOP逆時針旋轉(zhuǎn),使邊AO與AB重合,得△ABD.
①如圖②,當點P運動到點(,0)時,求此時點D的坐標;
②求在點P運動過程中,使△OPD的面積等于的點P的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=45°,線段AB在射線ON上運動,AB=2.
(1)如圖1,已知OA=AB,AC=BC,∠ACB=90°,點C在∠MON內(nèi).
①求證:以點C為圓心,CA的半徑的圓與射線OM相切(切點記為點P);
②∠APB的大小為 .
(2)如圖2,若射線OM上存在點Q,使得∠AQB=30度,試利用圖2,求A,O兩點之間距離t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,圓O的兩條弦AC、BD交于點E,兩條弦所成的銳角或者直角記為∠α
(1)點點同學通過畫圖和測量得到以下近似數(shù)據(jù):
的度數(shù) | 30.2° | 40.4° | 50.0° | 61.6° |
的度數(shù) | 55.7° | 60.4° | 80.2° | 100.3° |
∠α的度數(shù) | 43.0° | 50.2° | 65.0° | 81.0° |
猜想: 、、∠α的度數(shù)之間的等量關系,并說明理由﹒
(2)如圖2,若∠α=60°,AB=2,CD=1,將以圓心為中心順時針旋轉(zhuǎn),直至點A與點D重合,同時B落在圓O上的點,連接CG﹒
①求弦CG的長;
②求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題背景)如圖1,在四邊形ADBC中,∠ACB=∠ADB=90o,AD=BD, 探究線段AC,BC,CD之間的數(shù)量關系
小明同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉(zhuǎn)90o到△AED處,點B,C分別 落在點A,E處(如圖2),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結論:AC+BC= CD
(簡單應用)
(1)在圖1中,若AC=6,CD=,則AB= .
(2)如圖3,AB是⊙O的直徑,點C.D在⊙O上,∠C=45o,若AB=25,BC=24,求CD的長.
(拓展延伸)
(3)如圖4,∠ACB=∠ADB=90o,AD=BD,若AC=,CD=,求BC的長.(用含,的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com