【題目】某學(xué)校計(jì)劃在總費(fèi)用2300元的限額內(nèi)租用客車送234名學(xué)生和6名教師集體外出活動(dòng),每輛客車上至少要有1名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.

甲種客車

乙種客車

載客量/(/)

45

30

租金/(/)

400

280

(1)共需租多少輛客車?

(2)請給出最節(jié)省費(fèi)用的租車方案.

【答案】(1)客車總數(shù)為6;(2)租4輛甲種客車,2輛乙種客車費(fèi)用少.

【解析】1)由師生總數(shù)為240,根據(jù)所需租車數(shù)=人數(shù)÷載客量算出租載客量最大的客車所需輛數(shù),再結(jié)合每輛車上至少要有1名教師,即可得出結(jié)論

2)設(shè)租乙種客車x,則甲種客車(6x)輛,根據(jù)師生總數(shù)為240人以及租車總費(fèi)用不超過2300即可得出關(guān)于x的一元一次不等式,解不等式即可得出x的值,再設(shè)租車的總費(fèi)用為y根據(jù)總費(fèi)用=A種客車所需費(fèi)用+租B種客車所需費(fèi)用即可得出y關(guān)于x的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)結(jié)合x的值即可解決最值問題.

1234+6÷45=5(輛)15(人),∴保證240名師生都有車坐,汽車總數(shù)不能小于6;

∵只有6名教師,∴要使每輛汽車上至少要有1名教師,汽車總數(shù)不能大于6

綜上可知共需租6輛汽車.

2)設(shè)租乙種客車x,則甲種客車(6x)輛,由已知得

解得x2

x為整數(shù)x=1,x=2

設(shè)租車的總費(fèi)用為yy=280x+400×6x)=﹣120x+2400

1200,∴當(dāng)x=2時(shí),y取最小值最小值為2160元.

故租甲種客車4輛、乙種客車2輛時(shí),所需費(fèi)用最低,最低費(fèi)用為2160元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,E是CD上一點(diǎn),DE:EC=1:3,連AE,BE,BD且AE,BD交于F,則SDEF:SEBF:SABF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郵遞員騎摩托車從郵局出發(fā),先向南騎行2km到達(dá)A村,繼續(xù)向南騎行3km到達(dá)B 村,然后向北騎行9kmC村,最后回到郵局.

(1)以郵局為原點(diǎn),以向北方向?yàn)檎较颍?/span>1個(gè)單位長度表示1km,請你在數(shù)軸上表示出A、B、C三個(gè)村莊的位置;

(2)C村離A村有多遠(yuǎn)?

(3)若摩托車每100km耗油3升,這趟路共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4(k﹣)=0.

(1)判斷這個(gè)一元二次方程的根的情況;

(2)若等腰三角形的一邊長為3,另兩條邊的長恰好是這個(gè)方程的兩個(gè)根,求這個(gè)等腰三角形的周長及面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)興趣小組在一次數(shù)學(xué)課外活動(dòng)中,隨機(jī)抽查該校10名同學(xué)參加今年初中學(xué)業(yè)水平考試的體育成績,得到結(jié)果如下表所示:

下列說法正確的是(

A.這10名同學(xué)體育成績的中位數(shù)為38分

B.這10名同學(xué)體育成績的平均數(shù)為38分

C.這10名同學(xué)體育成績的眾數(shù)為39分

D.這10名同學(xué)體育成績的方差為2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把RtABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A,B的坐標(biāo)分別為(1,0),(4,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x-6上時(shí),線段BC掃過的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條折線數(shù)軸.圖中點(diǎn)A表示﹣11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

問:(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?

(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少;

(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程﹣1的步驟如下:

(解析)第一步:﹣1(分?jǐn)?shù)的基本性質(zhì))

第二步:2x﹣1=3(2x+8)﹣3……(①)

第三步:2x﹣1=6x+24﹣3……(②)

第四步:2x﹣6x=24﹣3+1……(③)

第五步:﹣4x=22(④)

第六步:x=﹣……(⑤)

以上解方程第二步到第六步的計(jì)算依據(jù)有:去括號(hào)法則.等式性質(zhì)一.③等式性質(zhì)二.合并同類項(xiàng)法則.請選擇排序完全正確的一個(gè)選項(xiàng)(  )

A. ②①③④② B. ②①③④③ C. ③①②④③ D. ③①④②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有兩根直桿隔河相對(duì),桿CD30m,桿AB20m,兩桿相距50m.現(xiàn)兩桿上各有一只魚鷹,它們同時(shí)看到兩桿之間的河面上E處浮起一條小魚,于是以同樣的速度同時(shí)飛下來奪魚,結(jié)果兩只魚鷹同時(shí)到達(dá),叼住小魚.問兩桿底部距魚的距離各是多少?

查看答案和解析>>

同步練習(xí)冊答案