【題目】探究題:
(一)小明在玩積木時,把三個正方體積木擺成一定的形狀,正面看如圖①所示:
(1)若圖中的△DEF為直角三角形,∠DEF=90°,正方形P的面積為9,正方形Q的面積為15,則正方形M的面積為________;
(2)若P的面積為36cm,Q的面積為64cm,同時M的面積為100cm,則△DEF為________三角形.
(二)圖形變化:如圖②,分別以直角三角形ABC(∠ACB=90°)的三邊為直徑向三角形外作三個半圓,你能找出這三個半圓的面積S1、S2、S3之間有什么關(guān)系嗎?請說明理由.
【答案】(一)(1)24,(2)直角;(二) S1+S2=S3,見解析.
【解析】
(一)直接根據(jù)勾股定理及正方形的性質(zhì)進行解答;
(二)根據(jù)勾股定理得出AB2=AC2+BC2,再根據(jù)圓的面積公式得出S1、S2、S3的表達式,找出其中的關(guān)系即可.
(一)、
(1)M的面積為:24.
(2)△DEF為直角三角形.
(二)、S1+S2=S3 理由如下:
∵△ABC是直角三角形,
∴AC2+BC2=AB2
∵S1=π·(AC)2= πAC2,
S2=π·(BC)2=πBC2,
S3=π·(AB)2=πAB2,
∴S1+S2=πAC2+πBC2=π(AC2+BC2)=πAB2,
∴S1+S2=S3。
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:小天在學習銳角三角函數(shù)中遇到這樣一個問題:在Rt△ABC中,∠C=90°,∠B=22.5°,則tan22.5°=
小天根據(jù)學習幾何的經(jīng)驗,先畫出了幾何圖形(如圖1),他發(fā)現(xiàn)22.5°不是特殊角,但它是特殊角45°的一半,若構(gòu)造有特殊角的直角三角形,則可能解決這個問題.于是小天嘗試著在CB邊上截取CD=CA,連接AD(如圖2),通過構(gòu)造有特殊角(45°)的直角三角形,經(jīng)過推理和計算使問題得到解決.
(1)請回答:tan22.5°= .
(2)解決問題:
如圖3,在等腰△ABC中,AB=AC,∠A=30°,請借助△ABC構(gòu)造出15°的角,并計算tan15°值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x1,x2是一元二次方程4kx2-4kx+k+1=0的兩個實數(shù)根.
(1)是否存在實數(shù)k,使(2x1-x2)(x1-2x2)=-成立?若存在,求出k的值;若不存在,請說明理由;
(2)求使-2的值為整數(shù)的整數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(思考)數(shù)軸上,點C是線段AB的中點,請?zhí)顚懴铝斜砀?/span>
A點表示的數(shù) | B點表示的數(shù) | C點表示的數(shù) |
2 | 6 |
|
﹣1 | ﹣5 |
|
﹣3 | 1 |
|
(發(fā)現(xiàn))通過表格可以得到,數(shù)軸上一條線段的中點表示的數(shù)是這條線段兩端點表示的數(shù)的 ;
(表達)若數(shù)軸上A、B兩點表示的數(shù)分別為m、n,則線段AB的中點表示的數(shù)是 ;
(應用)如圖,數(shù)軸上點A、C、B表示的數(shù)分別為﹣2x、x﹣4、1,且點C是線段AB的中點,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上點A、C表示的數(shù)為﹣14、4,甲、乙兩點分別從A、C兩點出發(fā),同時相向而行,已知甲的速度為4個單位/秒,乙的速度為3個單位/秒.
(1)求相遇點表示的數(shù);
(2)數(shù)軸上有一點B表示的數(shù)為﹣4,甲到達點C后調(diào)頭返回,求運動多少秒后,甲、乙兩點到B點的距離相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要在平行四邊形內(nèi)作一個菱形.甲,乙兩位同學的作法分別如下:
對于甲乙兩人的作法,可判斷( )
A.甲正確,乙錯誤B.甲錯誤,乙正確C.甲,乙均正確D.甲、乙均錯誤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com