【題目】如圖,在四邊形ABCD中,∠B=90°,∠BCD=135°,且AB=3cm,BC=7cm,CD=5cm,點M從點A出發(fā)沿折線A﹣B﹣C﹣D運動到點D,且在AB上運動的速度為cm/s,在BC上運動的速度為1cm/s,在CD上運動的速度為cm/s,連接AM、DM,當點M運動時間為_____(s)時,△ADM是直角三角形.
【答案】12﹣ 或 .
【解析】
過點D作DE⊥BC,根據(jù)∠BCD=135°,得∠ECD=45°,在Rt△CDE中,由CD=5cm,可得出CE=DE=5cm,再根據(jù)當點M在AB上時,△ADM是鈍角三角形;當點M在BC上時,△ADM有可能是直角三角形;當點M在CD上時,△ADM是鈍角三角形;分兩種情形分別求解即可.
解:過點D作DE⊥BC,垂足為E,
∵∠BCD=135°,
∴∠ECD=45°,
在Rt△CDE中,∵CD=5cm,
∴由勾股定理得CE=DE=5cm,
∴當點M在AB上時,△ADM是鈍角三角形;
當點M在CD上時,△ADM是鈍角三角形;
當點M在BC上時,△ADM有可能是直角三角形;
①當∠AMD=90°時,∵∠B=90°,
∴∠BAM+∠AMB=90°,
∵∠AMD=90°,
∴∠AMB+∠DME=90°,
∴∠MAB=∠DME,
∴△ABM∽△MED,
∴ ,
∵在AB上運動的速度為 cm/s,在BC上運動的速度為1cm/s,
∴設(shè)運動時間為t,
∵AB=3cm,BC=7cm,
∴BM=(t﹣6)cm,
∴ME=MC+EC=7﹣(t﹣6)+5=(18﹣t)cm,
∴ ,
解得t=12 (舍去正號)
∴t=12﹣ .
②當∠MAD=90°時,作AH⊥DE于H.
由△BAM∽△HAD,可得,
∴ = ,
∴BM= ,
∴t-6= ,解得t= ,
綜上所述,t=12﹣ 或時,△ADM是直角三角形.
故答案為:12﹣ 或 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為坐標原點,點A(1,5)和點B(m,1)均在反比例函數(shù)y= 圖象上.
(1)求m,k的值;
(2)設(shè)直線AB與x軸交于點C,求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(一)問題提出:如何把n個邊長為1的正方形,剪拼成一個大正方形?
(二)解決方法
探究一:若n是完全平方數(shù),我們不用剪切小正方形,可直接將小正方形拼成一個大正方形,如圖(1),用四個邊長為1的小正方形可以拼成一個大正方形.
問題1:請用9個邊長為1的小正方形在圖(2)的位置拼成一個大正方形.
探究二:若n=2,5,10,13等這些數(shù),都可以用兩個正整數(shù)的平方和來表示,以n=5為例,用5個邊長為1的小正方形剪拼成一個大正方形.
(1)計算:拼成的大正方形的面積為5,邊長為,可表示成;
(2)剪切:如圖(3)將5個小正方形按如圖所示分成5部分,虛線為剪切線;
(3)拼圖:以圖(3)中的虛線為邊,拼成一個邊長為的大正方形,如圖(4).
問題2:請仿照上面的研究方式,用13個邊長為1的小正方形剪拼成一個大正方形;
(1)計算:拼成的大正方形的面積為____,邊長為_____,可表示成____;
(2)剪切:請仿照圖(3)的方法,在圖(5)的位置畫出圖形.
(3)拼圖:請仿照圖(4)的方法,在圖(6)的位置出拼成的圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=6,第1次平移將長方形ABCD沿AB的方向向右平移5個單位,得到長方形A1B1C1D1,第2次平移將長方形A1B1C1D1沿A1B1的方向向右平移5個單位,得到長方形A2B2C2D2,…,以此類推,第n次平移將長方形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向向右平移5個單位,得到長方形AnBnCnDn(n>2),則ABn長為 ( )
A. 5n+6B. 5n+1C. 5n+4D. 5n+3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為一種新型電子產(chǎn)品在該城市的特約經(jīng)銷商,已知每件產(chǎn)品的進價為40元,該公司每年銷售這種產(chǎn)品的其他開支(不含進貨價)總計100萬元,在銷售過程中得知,年銷售量y(萬件)與銷售單價x(元)之間存在如表所示的函數(shù)關(guān)系,并且發(fā)現(xiàn)y是x的一次函數(shù).
銷售單價x(元) | 50 | 60 | 70 | 80 |
銷售數(shù)量y(萬件) | 5.5 | 5 | 4.5 | 4 |
(1)求y與x的函數(shù)關(guān)系式;
(2)問:當銷售單價x為何值時,該公司年利潤最大?并求出這個最大值;
【備注:年利潤=年銷售額﹣總進貨價﹣其他開支】
(3)若公司希望年利潤不低于60萬元,請你幫助該公司確定銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】工廠工人小李生產(chǎn)A、B兩種產(chǎn)品.若生產(chǎn)A產(chǎn)品10件,生產(chǎn)B產(chǎn)品10件,共需時間350分鐘;若生產(chǎn)A產(chǎn)品30件,生產(chǎn)B產(chǎn)品20件,共需時間850分鐘.
(1)小李每生產(chǎn)一件種產(chǎn)品和每生產(chǎn)一件種產(chǎn)品分別需要多少分鐘;
(2)小李每天工作8個小時,每月工作25天.如果小李四月份生產(chǎn)種產(chǎn)品件(為正整數(shù)).
①用含的代數(shù)式直接表示小李四月份生產(chǎn)種產(chǎn)品的件數(shù);
②已知每生產(chǎn)一件產(chǎn)品可得1.40元,每生產(chǎn)一件種產(chǎn)品可得2.80元,若小李四月份的工資不少于1500元,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠2,∠5=∠6,∠3=∠4,試說明AE∥BD,AD∥BC.請完成下列證明過程.
證明:
∵∠5=∠6,
∴AB∥CE( ),
∴∠3=__________
∵∠3=∠4,
∴∠4=∠BDC( ),
∴ ∥BD( ),
∴∠2= ( )
∵∠1=∠2,
∴∠1=______,
∴AD∥BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,ABCD是邊長為60cm的正方形硬紙片,切去四個全等的等腰直角三角形(陰影部分所示),其中E,F(xiàn)在AB上;再沿虛線折起,點A,B,C,D恰好重合于點O處(如圖②所示),形成有一個底面為正方形GHMN的包裝盒,設(shè)AE=x (cm).
(1)求線段GF的長;(用含x的代數(shù)式表示)
(2)當x為何值時,矩形GHPF的面積S (cm2)最大?最大面積為多少?
(3)試問:此種包裝盒能否放下一個底面半徑為15cm,高為10cm的圓柱形工藝品,且使得圓柱形工藝品的一個底面恰好落在圖②中的正方形GHMN內(nèi)?若能,請求出滿足條件的x的值或范圍;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com