【題目】設(shè)函數(shù)f(x)=|x2﹣2x﹣1|,若m>n>1,且f(m)=f(n),則mn的取值范圍為(
A.
B.
C.(1,3)
D.(1,3]

【答案】A
【解析】解:解方程x2﹣2x﹣1=0得x=1± , ∴當1﹣ <x<1+ 時,x2﹣2x﹣1<0,
當x<1﹣ 或x>1+ 時,x2﹣2x﹣1>0,
作出f(x)的函數(shù)圖象如圖所示:

∵m>n>1,且f(m)=f(n),
∴1<n<1 ,1+ <m<3.
f(n)=﹣n2+2n+1,f(m)=m2﹣2m﹣1,
∵f(m)=f(n),
∴m2﹣2m﹣1+n2﹣2n﹣1=0,即(m+n﹣1)2=2mn+3,
∵m+n>2 >1,
∴(m+n﹣1)2>(2 ﹣1)2=4mn﹣4 +1,
∴2mn+3>4mn﹣4 +1,解得0< <1+
∴mn<3+2 ,
故選:A.
【考點精析】掌握函數(shù)的值和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法;當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)衛(wèi)生防疫部門要求,游泳池必須定期換水,清洗.某游泳池周五早上8:00打開排水孔開始排水,排水孔的排水速度保持不變,期間因清洗游泳池需要暫停排水,游泳池的水在11:30全部排完.游泳池內(nèi)的水量Q(m2)和開始排水后的時間t(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:

(1)暫停排水需要多少時間?排水孔排水速度是多少?
(2)當2≤t≤3.5時,求Q關(guān)于t的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x3 x2+logax,(a>0且a≠1)為定義域上的增函數(shù),f'(x)是函數(shù)f(x)的導數(shù),且f'(x)的最小值小于等于0. (Ⅰ)求a的值;
(Ⅱ)設(shè)函數(shù) ,且g(x1)+g(x2)=0,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知 ,數(shù)列 的前n項和為Sn , 數(shù)列{bn}的通項公式為bn=n﹣8,則bnSn的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l的極坐標方程為ρsin(θ+ )= ,圓C的參數(shù)方程為: (其中θ為參數(shù)).
(1)判斷直線l與圓C的位置關(guān)系;
(2)若橢圓的參數(shù)方程為 (φ為參數(shù)),過圓C的圓心且與直線l垂直的直線l′與橢圓相交于A,B兩點,求|AB|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,BD=2AD=8,AB=4
(Ⅰ)證明:平面PBD⊥平面PAD;
(Ⅱ)求二面角B﹣PA﹣D的余弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù) ,g(x)為定義在R上的奇函數(shù),且當x<0時,g(x)=x2﹣2x﹣5,若f(g(a))≤2,則實數(shù)a的取值范圍是(
A.
B. ??
C.(﹣∞,﹣1]∪(0,3]
D.[﹣1,3]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE為折痕,使AB的一部分與BC重合,ABC延長線上的點D重合,則CE的長度為( )

A. 1 B. C. 2 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”,為了了解人們對“延遲退休年齡政策”的態(tài)度,責成人社部進行調(diào)研,人社部從網(wǎng)上年齡在15~65歲的人群中隨機調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下

年齡

[15,25)

[25,35)

[35,45)

[45,55)

[55,65]

支持“延遲退休”的人數(shù)

15

5

15

28

17


(1)由以上統(tǒng)計數(shù)據(jù)填2×2列聯(lián)表,并判斷是否95%的把握認為以45歲為界點的不同人群對“延遲退休年齡政策”的支持有差異;

45歲以下

45歲以上

總計

支持

不支持

總計


(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動,現(xiàn)從這8人中隨機抽2人. ①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率;
②記抽到45歲以上的人數(shù)為X,求隨機變量X的分布列及數(shù)學期望.

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案