【題目】不等式3x5≤1的正整數(shù)解是_______

【答案】21

【解析】

解出不等式3x﹣5≤1的解集,即可得到不等式3x﹣5≤1的正整數(shù)解.

解:3x5≤1

3x≤6

x≤2,

∴不等式3x5≤1的正整數(shù)解是21,

故答案為:21

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解大氣污染情況,某學(xué)校興趣小組搜集了2017年上半年中120天鄭州市的空氣質(zhì)量指數(shù),繪制了如下不完整的統(tǒng)計圖表:

空氣質(zhì)量指數(shù)統(tǒng)計表

級別 

指數(shù)

天數(shù)

百分比

優(yōu)

0﹣50

24

m

51﹣100

a

40%

輕度污染

101﹣150

18

15%

中度污染

151﹣200

15

12.5% 

重度污染

201﹣300

9

7.5%

嚴(yán)重污染

大于300

6

5%

合計

120

100%

請根據(jù)圖表中提供的信息,解答下面的問題:

(1)空氣質(zhì)量指數(shù)統(tǒng)計表中的a=   ,m=   ;

(2)請把空氣質(zhì)量指數(shù)條形統(tǒng)計圖補充完整:

(3)若繪制“空氣質(zhì)量指數(shù)扇形統(tǒng)計圖”,級別為“優(yōu)”所對應(yīng)扇形的圓心角是   度;

(4)請通過計算估計鄭州市2017年中空氣質(zhì)量指數(shù)大于100的天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平臺AB高為12m,在B處測得樓房CD頂部點D的仰角為45°,底部點C的俯角為30°,求樓房CD的高度(=1.7).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在A、B之間有汽車站C站,A、C兩地相距540千米,如圖1所示.客車由A地駛向C站、貨車由B地駛向A地,兩車同時出發(fā),勻速行駛,貨車的速度是客車速度的.圖2是客、貨車離C站的路程、(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系圖象.

(1)求客、貨兩車的速度;

(2)求兩小時后,貨車離C站的路程與行駛時間x之間的函數(shù)關(guān)系式;

(3)求E點坐標(biāo),并說明點E的實際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南海是我國固有領(lǐng)海,它的面積超過東海、黃海、渤海面積的總和,約為360萬平方千米,360萬用科學(xué)記數(shù)法表示為( )
A.3.6×102
B.360×104
C.3.6×104
D.3.6×106

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(﹣3x+1)(﹣2x)2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解a(b﹣c)﹣3(c﹣b)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線AM平行于射線BN,∠B=90°,AB=4,C是射線BN上的一個動點,連接AC,作CDAC,且AC=2CD,過CCEBNAD于點E,設(shè)BC長為a

(1)求△ACD的面積(用含a的代數(shù)式表示);

(2)求點D到射線BN的距離(用含有a的代數(shù)式表示);

(3)是否存在點C,使△ACE是以AE為腰的等腰三角形?若存在,請求出此時a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點B(1, 0)、C(3, 0)、D(3, 4).以A為頂點的拋物線y=ax2+bx+c過點C.動點P從點A出發(fā),以每秒個單位的速度沿線段AD向點D運動,運動時間為t秒.過點P作PE⊥x軸交拋物線于點M,交AC于點N.

(1)直接寫出點A的坐標(biāo),并求出拋物線的解析式;

(2)當(dāng)t為何值時,△ACM的面積最大?最大值為多少?

(3)點Q從點C出發(fā),以每秒1個單位的速度沿線段CD向點D運動,當(dāng)t為何值時,在線段PE上存在點H,使以C、Q、N、H為頂點的四邊形為菱形?

查看答案和解析>>

同步練習(xí)冊答案