【題目】把一張長方形紙片ABCD沿EF折疊后ED與BC的交點為G,D、C分別在M、N的位置上,若∠EFG=55°,求:
(1)∠FED的度數(shù);
(2)∠FEG的度數(shù);
(3)∠1和∠2的度數(shù).
【答案】解:(1)∵AD∥BC,∠EFG=55°,∴∠FED=∠EFG=55°;
(2)∵四邊形EFNM由四邊形EFCD翻折而成,∴∠FEG=∠FED=55°;
(3)∵∠FEG=∠FED=55°,∴∠1=180°﹣55°﹣55°=70°.
∵AD∥BC,∴∠2=180°﹣∠1=180°﹣70°=110°.
【解析】(1)直接根據(jù)平行線的性質(zhì)可得出結(jié)論;
(2)根據(jù)圖形翻折不變換的性質(zhì)得出結(jié)論;
(3)先根據(jù)補角的定義求出∠1的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.
【考點精析】認(rèn)真審題,首先需要了解平行線的性質(zhì)(兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,分別探討下面四個圖形中∠APC與∠PAB、∠PCD的關(guān)系,請你從所得到的關(guān)系中任選一個加以說明.(適當(dāng)添加輔助線,其實并不難)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在括號內(nèi)填上適當(dāng)?shù)囊蚴剑?/span>(1) –x-1=-(______);(2)a-b+c=a-(______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB⊥CD,垂足為E,點M在OC上,AM的延長線交⊙O于點G,交過C的直線于F,∠1=∠2,連結(jié)CB與DG交于點N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點M是CO的中點,⊙O的半徑為4,cos∠BOC=,求BN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為( )
A. 115° B. 120° C. 130° D. 140°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com