【題目】如圖,在ABC中,點(diǎn)DBC邊的中點(diǎn),以D為頂點(diǎn)的∠EDF的兩邊分別與AB、AC交于點(diǎn)E、F,且∠EDF與∠A互補(bǔ).

(1)如圖①,若AB=AC,且∠A=90°,證明:DE=DF;

(2)如圖②,若AB=AC,那么(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.

(3)如圖③,若,探索線(xiàn)段DEDF的數(shù)量關(guān)系,并證明你的結(jié)論.

【答案】(1)見(jiàn)解析;(2)成立,理由見(jiàn)解析;(3),理由見(jiàn)解析

【解析】分析:(1)首先根據(jù)等腰三角形的性質(zhì)可得∠DAB=DAC=BAC,ADBC,再證明∠C=B=45°,ADE=FDC,AD=DC可以利用ASA定理證明AED≌△CFD,進(jìn)而得到DE=DF;

(2)DE=DF依然成立.如圖2,過(guò)點(diǎn)DDMABM,作DNACN,連接AD,則∠EMD=FND=90°,由于AB=AC,點(diǎn)DBC中點(diǎn),根據(jù)三角形的性質(zhì)三線(xiàn)合一得到AD平分∠BAC,于是得到DM=DN,在四邊形AMDN中.,∠DMA=DNA=90°,得到∠MAN+MDN=180°,又由于∠EDF與∠MAN互補(bǔ),證得∠MDN=EDF,推出DEM≌△DFN(ASA),即可得到結(jié)論;

(3)結(jié)論DE:DF=n:m.如圖3,過(guò)點(diǎn)DDMABM,作DNACN,連接AD同(2)可證∠1=2,通過(guò)DEM∽△DFN,得到.由于點(diǎn)EAC的中點(diǎn),得到SABD=SADC,列等積式即可得到結(jié)論.

詳解:(1)DF=DE,

理由:如圖1,連接AD,

RtABC是等腰三角形,

∴∠C=B=45°,

D是斜邊BC的中點(diǎn),

∴∠DAB=DAC=BAC=45°,ADBC,

AD=DC,

∵∠EDF=90°,

∴∠ADF+ADE=90°,

ADBC,

∴∠ADC=90°,

∴∠ADF+FDC=90°,

∴∠ADE=FDC,

ADECDF中,

∴△AED≌△CFD(ASA);

DE=DF;

(2)DE=DF依然成立.

如圖2,過(guò)點(diǎn)DDMABM,作DNACN,連接AD,

則∠EMD=FND=90°,

AB=AC,點(diǎn)DBC中點(diǎn),

AD平分∠BAC,

DM=DN,

∵在四邊形AMDN中.,∠DMA=DNA=90°,

∴∠MAN+MDN=180°,

又∵∠EDF與∠MAN互補(bǔ),

∴∠MDN=EDF,

∴∠1=2,

DEMDFN中,

,

∴△DEM≌△DFN(ASA),

DE=DF.

(3)結(jié)論DE:DF=n:m.

如圖3,過(guò)點(diǎn)DDMABM,作DNACN,連接AD,

同(2)可證∠1=2,

又∵∠EMD=FND=90°,

∴△DEM∽△DFN,

∵點(diǎn)DBC邊的中點(diǎn),

SABD=SADC

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】發(fā)現(xiàn)問(wèn)題、探索規(guī)律,要有一雙敏銳的雙眼,下面的圖形是由邊長(zhǎng)為1的小正方形按照某種規(guī)律排列而成的.

1)觀察圖形,填寫(xiě)下表:

圖形個(gè)數(shù)(n

1

2

3

正方形的個(gè)數(shù)

8

   

   

圖形的周長(zhǎng)

18

   

   

2)推測(cè)第n個(gè)圖形中,正方形有   個(gè),周長(zhǎng)為   

3)寫(xiě)出第30個(gè)圖形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的第一象限內(nèi),BCx軸平行,AB=1,點(diǎn)C的坐標(biāo)為(6,2),EAD的中點(diǎn);反比例函數(shù)y1=(x>0)圖象經(jīng)過(guò)點(diǎn)C和點(diǎn)E,過(guò)點(diǎn)B的直線(xiàn)y2=ax+b與反比例函數(shù)圖象交于點(diǎn)F,點(diǎn)F的縱坐標(biāo)為4.

(1)求反比例函數(shù)的解析式和點(diǎn)E的坐標(biāo);

(2)求直線(xiàn)BF的解析式;

(3)直接寫(xiě)出y1>y2時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中:

0是最小的整數(shù);

有理數(shù)不是正數(shù)就是負(fù)數(shù);

正整數(shù)、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)為有理數(shù);

非負(fù)數(shù)就是正數(shù);

不僅是有理數(shù),而且是分?jǐn)?shù);

是無(wú)限不循環(huán)小數(shù),所以不是有理數(shù);

無(wú)限小數(shù)不都是有理數(shù);

正數(shù)中沒(méi)有最小的數(shù),負(fù)數(shù)中沒(méi)有最大的數(shù).

其中錯(cuò)誤的說(shuō)法的個(gè)數(shù)為(  )

A.7個(gè)B.6個(gè)C.5個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)老師布置了一道思考題“計(jì)算:(-)÷()”,小明仔細(xì)思考了一番,用了一種不同的方法解決了這個(gè)問(wèn)題.

小明的解法:原式的倒數(shù)為()÷()=()×(-12)=-4+10=6,所以(-)÷()=

(1)請(qǐng)你判斷小明的解答是否正確,并說(shuō)明理由.

(2)請(qǐng)你運(yùn)用小明的解法解答下面的問(wèn)題.

計(jì)算:(-)÷(+).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交AB,AD于點(diǎn)M,N;②分別以M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P;③作AP射線(xiàn),交邊CD于點(diǎn)Q,若DQ=2QCBC=3,則平行四邊形ABCD周長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)ab分別與∠A的兩邊相交,且ab下列各角的度數(shù)關(guān)系正確的是(  )

A. ∠2+∠5>180° B. ∠2+∠3<180° C. ∠1+∠6>180° D. ∠3+∠4<180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=10P是線(xiàn)段AB上的動(dòng)點(diǎn),分別以AP、PB為邊在線(xiàn)段AB的同側(cè)作等邊△ACP和△PDB,連接CD,設(shè)CD的中點(diǎn)為G,當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),則點(diǎn)G移動(dòng)路徑的長(zhǎng)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形紙片ABCD的∠C沿著GF折疊(點(diǎn)FBC上,不與B,C重合),使點(diǎn)C落在長(zhǎng)方形內(nèi)部的點(diǎn)E處,若FH平分∠BFE,則∠GFH的度數(shù)是( )

A.110°B.100°C.90°D.80°

查看答案和解析>>

同步練習(xí)冊(cè)答案