【題目】如圖,在△ABC中,點(diǎn)D為BC邊的中點(diǎn),以D為頂點(diǎn)的∠EDF的兩邊分別與AB、AC交于點(diǎn)E、F,且∠EDF與∠A互補(bǔ).
(1)如圖①,若AB=AC,且∠A=90°,證明:DE=DF;
(2)如圖②,若AB=AC,那么(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.
(3)如圖③,若,探索線(xiàn)段DE與DF的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)見(jiàn)解析;(2)成立,理由見(jiàn)解析;(3),理由見(jiàn)解析
【解析】分析:(1)首先根據(jù)等腰三角形的性質(zhì)可得∠DAB=∠DAC=∠BAC,AD⊥BC,再證明∠C=∠B=45°,∠ADE=∠FDC,AD=DC可以利用ASA定理證明△AED≌△CFD,進(jìn)而得到DE=DF;
(2)DE=DF依然成立.如圖2,過(guò)點(diǎn)D作DM⊥AB于M,作DN⊥AC于N,連接AD,則∠EMD=∠FND=90°,由于AB=AC,點(diǎn)D為BC中點(diǎn),根據(jù)三角形的性質(zhì)三線(xiàn)合一得到AD平分∠BAC,于是得到DM=DN,在四邊形AMDN中.,∠DMA=∠DNA=90°,得到∠MAN+∠MDN=180°,又由于∠EDF與∠MAN互補(bǔ),證得∠MDN=∠EDF,推出△DEM≌△DFN(ASA),即可得到結(jié)論;
(3)結(jié)論DE:DF=n:m.如圖3,過(guò)點(diǎn)D作DM⊥AB于M,作DN⊥AC于N,連接AD同(2)可證∠1=∠2,通過(guò)△DEM∽△DFN,得到.由于點(diǎn)E為AC的中點(diǎn),得到S△ABD=S△ADC,列等積式即可得到結(jié)論.
詳解:(1)DF=DE,
理由:如圖1,連接AD,
∵Rt△ABC是等腰三角形,
∴∠C=∠B=45°,
∴D是斜邊BC的中點(diǎn),
∴∠DAB=∠DAC=∠BAC=45°,AD⊥BC,
∴AD=DC,
∵∠EDF=90°,
∴∠ADF+∠ADE=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ADF+∠FDC=90°,
∴∠ADE=∠FDC,
在△ADE和△CDF中,
,
∴△AED≌△CFD(ASA);
∴DE=DF;
(2)DE=DF依然成立.
如圖2,過(guò)點(diǎn)D作DM⊥AB于M,作DN⊥AC于N,連接AD,
則∠EMD=∠FND=90°,
∵AB=AC,點(diǎn)D為BC中點(diǎn),
∴AD平分∠BAC,
∴DM=DN,
∵在四邊形AMDN中.,∠DMA=∠DNA=90°,
∴∠MAN+∠MDN=180°,
又∵∠EDF與∠MAN互補(bǔ),
∴∠MDN=∠EDF,
∴∠1=∠2,
在△DEM與△DFN中,
,
∴△DEM≌△DFN(ASA),
∴DE=DF.
(3)結(jié)論DE:DF=n:m.
如圖3,過(guò)點(diǎn)D作DM⊥AB于M,作DN⊥AC于N,連接AD,
同(2)可證∠1=∠2,
又∵∠EMD=∠FND=90°,
∴△DEM∽△DFN,
∴.
∵點(diǎn)D為BC邊的中點(diǎn),
∴S△ABD=S△ADC,
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】發(fā)現(xiàn)問(wèn)題、探索規(guī)律,要有一雙敏銳的雙眼,下面的圖形是由邊長(zhǎng)為1的小正方形按照某種規(guī)律排列而成的.
(1)觀察圖形,填寫(xiě)下表:
圖形個(gè)數(shù)(n) | (1) | (2) | (3) |
正方形的個(gè)數(shù) | 8 |
|
|
圖形的周長(zhǎng) | 18 |
|
|
(2)推測(cè)第n個(gè)圖形中,正方形有 個(gè),周長(zhǎng)為 .
(3)寫(xiě)出第30個(gè)圖形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的第一象限內(nèi),BC與x軸平行,AB=1,點(diǎn)C的坐標(biāo)為(6,2),E是AD的中點(diǎn);反比例函數(shù)y1=(x>0)圖象經(jīng)過(guò)點(diǎn)C和點(diǎn)E,過(guò)點(diǎn)B的直線(xiàn)y2=ax+b與反比例函數(shù)圖象交于點(diǎn)F,點(diǎn)F的縱坐標(biāo)為4.
(1)求反比例函數(shù)的解析式和點(diǎn)E的坐標(biāo);
(2)求直線(xiàn)BF的解析式;
(3)直接寫(xiě)出y1>y2時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中:
①0是最小的整數(shù);
②有理數(shù)不是正數(shù)就是負(fù)數(shù);
③正整數(shù)、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)為有理數(shù);
④非負(fù)數(shù)就是正數(shù);
⑤不僅是有理數(shù),而且是分?jǐn)?shù);
⑥是無(wú)限不循環(huán)小數(shù),所以不是有理數(shù);
⑦無(wú)限小數(shù)不都是有理數(shù);
⑧正數(shù)中沒(méi)有最小的數(shù),負(fù)數(shù)中沒(méi)有最大的數(shù).
其中錯(cuò)誤的說(shuō)法的個(gè)數(shù)為( )
A.7個(gè)B.6個(gè)C.5個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)老師布置了一道思考題“計(jì)算:(-)÷()”,小明仔細(xì)思考了一番,用了一種不同的方法解決了這個(gè)問(wèn)題.
小明的解法:原式的倒數(shù)為()÷()=()×(-12)=-4+10=6,所以(-)÷()=.
(1)請(qǐng)你判斷小明的解答是否正確,并說(shuō)明理由.
(2)請(qǐng)你運(yùn)用小明的解法解答下面的問(wèn)題.
計(jì)算:(-)÷(+).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交AB,AD于點(diǎn)M,N;②分別以M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P;③作AP射線(xiàn),交邊CD于點(diǎn)Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)a、b分別與∠A的兩邊相交,且a∥b.下列各角的度數(shù)關(guān)系正確的是( )
A. ∠2+∠5>180° B. ∠2+∠3<180° C. ∠1+∠6>180° D. ∠3+∠4<180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=10,P是線(xiàn)段AB上的動(dòng)點(diǎn),分別以AP、PB為邊在線(xiàn)段AB的同側(cè)作等邊△ACP和△PDB,連接CD,設(shè)CD的中點(diǎn)為G,當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),則點(diǎn)G移動(dòng)路徑的長(zhǎng)是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)方形紙片ABCD的∠C沿著GF折疊(點(diǎn)F在BC上,不與B,C重合),使點(diǎn)C落在長(zhǎng)方形內(nèi)部的點(diǎn)E處,若FH平分∠BFE,則∠GFH的度數(shù)是( )
A.110°B.100°C.90°D.80°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com