如圖,∠1=30°,∠B=60°,AB⊥AC.
(1)∠DAB+∠B等于多少度?
(2)試證明:AD∥BC.

解:(1)∵AB⊥AC,
∴∠BAC=90°,
∵∠1=30°,∠B=60°,
∴∠DAB+∠B=∠BAC+∠CAD+∠B=90°+30°+60°=180°;

(2)∵∠DAB+∠B=180°,
∴AD∥BC.
分析:(1)由垂直的定義,可得∠BAC=90°,又由∠DAB+∠B=∠BAC+∠CAD+∠B,則可求得答案;
(2)由(1)知:∠DAB+∠B=180°,根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行,即可證得AD∥BC.
點(diǎn)評(píng):此題考查了垂直的定義與平行線的判定.題目比較簡單,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,∠PAQ=30°,若MP和NQ分別垂直平分AB和AC,則∠BAC的度數(shù)是
105
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖,∠AOB=30°,∠AOB內(nèi)有一定點(diǎn)P,且OP=10.在OA上有一點(diǎn)Q,OB上有一點(diǎn)R.若△PQR周長最小,則最小周長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•海南)如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當(dāng)⊙O與PA相切時(shí),圓心O平移的距離為
1或5
1或5
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠A=30°,∠D=45°,CE=2,CE⊥AD,則△ADC面積=
2
3
+2
2
3
+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,含30°的兩塊相同三角板ABC和DEF都是斜邊為4cm的直角三角形,且A、E、B、D(B、E不重合)都在同一直線上,連接CE、BF.
(1)求證:四邊形CEFB是平行四邊形;
(2)當(dāng)點(diǎn)A、E相距3cm時(shí),將△ABC沿著AD的方向以每秒1cm的速度運(yùn)動(dòng),設(shè)△ABC運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)問:當(dāng)t為何值時(shí),四邊形CEFB是菱形?說明你的理由;
(3)在(2)中再猜想:四邊形CEFB有可能是矩形嗎?若能,直接寫出t的值及此矩形的面積;若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案