【題目】閱讀材料,回答問(wèn)題
在邊長(zhǎng)為1的正方形ABCD中,E是AB的中點(diǎn),CF⊥DE,F(xiàn)為垂足.

(1)△CDF與△DEA是否相似?說(shuō)明理由;
(2)求CF的長(zhǎng).

【答案】
(1)解:△ADE∽△FCD,理由如下:

∵四邊形ABCD是正方形,

∴∠A=90°,AB∥CD,

∴∠CDF=∠DEA.

又CF⊥DE,

∴∠CFD=90°,即∠CFD=∠A,

因而,△ADE∽△FCD


(2)解:由題意知,AD=CD=1,AE=

在直角△DEA中,有DE= = =

由(1)可得: = ,則CF= =


【解析】(1)利用正方形的性質(zhì)和平行線的性質(zhì),由兩角法證明△ADE∽△FCD;
(2)根據(jù)勾股定理及相似三角形對(duì)應(yīng)邊成比例求解。
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和正方形的性質(zhì),需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的平面直角坐標(biāo)系中,已知A0,-3),B4,1),C(-53

(1) 求三角形ABC的面積;

(2) 點(diǎn)M是平面直角坐標(biāo)系第一象限內(nèi)的一動(dòng)點(diǎn),點(diǎn)M的縱坐標(biāo)為3,三角形BCM的面積為6,求點(diǎn)M的坐標(biāo);

(3) BCy軸的交點(diǎn)為D,求點(diǎn)D的坐標(biāo)(寫(xiě)出具體解答過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BD、CE分別平分∠ABC、∠ACB,∠A50°,則∠BOE__°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,工程上常用鋼珠來(lái)測(cè)量零件上小孔的直徑,假設(shè)鋼珠的直徑是12毫米,測(cè)得鋼珠頂端離零件表面的距離為9毫米,則這個(gè)小孔的直徑AB是毫米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線,點(diǎn)上,點(diǎn)、點(diǎn)上,的角平分線于點(diǎn),過(guò)點(diǎn)于點(diǎn),己知,則的度數(shù)為(

A. 26°B. 32°C. 36°D. 42°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)如圖,在ABC中,C=60°,A=40°.

(1)用尺規(guī)作圖作AB的垂直平分線,交AC于點(diǎn)D,交AB于點(diǎn)E(保留作圖痕跡,不要求寫(xiě)作法和證明);

(2)求證:BD平分CBA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝揭示了二項(xiàng)和的展開(kāi)式的各項(xiàng)系數(shù)規(guī)律,比歐洲的發(fā)現(xiàn)早三百年,為紀(jì)念楊輝的功績(jī),世人稱(chēng)如圖中右圖叫楊輝三角。

1)觀察楊輝三角規(guī)律,依次寫(xiě)出楊輝三角行中從左到右的各數(shù);

2)請(qǐng)運(yùn)用冪的意義和多項(xiàng)式乘法法則,按如下要求展開(kāi)下列各式,以驗(yàn)證楊輝三角第四行的規(guī)律:展開(kāi)后各項(xiàng)按字母降冪、升冪排列

3)解不等式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某小區(qū)某月家庭用水量的情況,從該小區(qū)隨機(jī)抽取部分家庭進(jìn)行調(diào)查,以下是根據(jù)調(diào)查數(shù)據(jù)繪制的統(tǒng)計(jì)圖表的一部分

分組

家庭用水量x/噸

家庭數(shù)/戶(hù)

A

0≤x≤4.0

4

B

4.0<x≤6.5

13

C

6.5<x≤9.0

D

9.0<x≤11.5

E

11.5<x≤14.0

6

F

x>14.0

3

根據(jù)以上信息,解答下列問(wèn)題

(1)家庭用水量在4.0<x≤6.5范圍內(nèi)的家庭有戶(hù),在6.5<x≤9.0范圍內(nèi)的家庭數(shù)占被調(diào)查家庭數(shù)的百分比是 %;
(2)本次調(diào)查的家庭數(shù)為戶(hù),家庭用水量在9.0<x≤11.5范圍內(nèi)的家庭數(shù)占被調(diào)查家庭數(shù)的百分比是 %;
(3)家庭用水量的中位數(shù)落在組;
(4)若該小區(qū)共有200戶(hù)家庭,請(qǐng)估計(jì)該月用水量不超過(guò)9.0噸的家庭數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只不透明的箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同.
(1)從箱子中隨機(jī)摸出一個(gè)球是白球的概率是多少?
(2)從箱子中隨機(jī)摸出一個(gè)球,記錄下顏色后不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出的球都是白球的概率,并畫(huà)出樹(shù)狀圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案