【題目】如圖,已知 AB 是⊙O 的直徑,點(diǎn) C、D 在⊙O 上,過 D 點(diǎn)作 PF∥AC交⊙O 于 F,交 AB 于點(diǎn) E,∠BPF=∠ADC
(1)求證:AEEB=DEEF.
(2)求證:BP 是⊙O 的切線:
(3)當(dāng)?shù)陌霃綖?/span>,AC=2,BE=1 時(shí),求 BP 的長(zhǎng),
【答案】(1)證明見解析.(2)證明見解析.(3)2.
【解析】
試題(1)根據(jù)圓周角定理得出∠ACB=90°,∠CAB+∠ABC=90°,進(jìn)而得出∠PEB+∠BPF=90°,從而證得PB是O的切線;
(2)證得△AEF∽△DEB,從而得出,即可證得AEEB=DEEF;
(3)先根據(jù)勾股定理求得BC的長(zhǎng),進(jìn)而根據(jù)△ABC∽△EPB,對(duì)應(yīng)邊成比例即可求得BP的長(zhǎng).
試題解析:(1)證明:連結(jié)BC,
∵AB是O的直徑,
∴∠ACB=90°,
∴∠CAB+∠ABC=90°,
又∵∠ABC=∠ADC,∠ADC=∠BPF,
∵PF∥AC,
∴∠CAB=∠PEB,
∴∠PEB+∠BPF=90°,
∴PB⊥AB,
∴PB是O的切線;
(2)連結(jié)AF、BD.
在△AEF和△DEB中,
∠AEF=∠DEB.∠AFE=∠DBE,
∴△AEF∽△DEB,
∴,即AEEB=DEEF;
(3)在Rt△ABC中,BC2=(2)2-22
∴BC=4,
在Rt△ABC和Rt△EPB中,
∠ABC=∠ADC=∠BPF,
∴△ABC∽△EPB,
∴,
∴BP==2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸為x=1,給出下列結(jié)論:①abc>0;②當(dāng)x>2時(shí),y>0;③3a+c>0;④3a+b>0.其中正確的結(jié)論有( )
A.①②
B.①④
C.①③④
D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】、在數(shù)軸上分別標(biāo)出與下列各數(shù)最鄰近的兩個(gè)整數(shù)所對(duì)應(yīng)的點(diǎn)的位置.
(1); (2)-; (3)-; (4) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)二次函數(shù)的圖象經(jīng)過點(diǎn)A、C、B三點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)C在y軸的正半軸上,且AB=OC.
(1)求點(diǎn)C的坐標(biāo);
(2)求這個(gè)二次函數(shù)的解析式,并求出該函數(shù)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀對(duì)學(xué)生的成長(zhǎng)有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表.
組別 | 時(shí)間(小時(shí)) | 頻數(shù)(人數(shù)) | 頻率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合計(jì) | 1 |
請(qǐng)根據(jù)圖表中的信息,解答下列問題:
(1)表中的a= ,b= ,中位數(shù)落在 組,將頻數(shù)分布直方圖補(bǔ)全;
(2)估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計(jì)劃在E組學(xué)生中隨機(jī)選出兩人向全校同學(xué)作讀書心得報(bào)告,請(qǐng)用畫樹狀圖或列表法求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師駕車從家出發(fā)到植物園賞花,勻速行駛一段時(shí)間后,途中遇到堵車原地等待一會(huì)兒,然后加速行駛,到達(dá)植物園,參觀結(jié)束后,張老師駕車一路勻速返回,其中x表示汽車從家出發(fā)后所用時(shí)間,y表示車離家的距離,下面能反映y與x的函數(shù)關(guān)系式的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線頂點(diǎn)坐標(biāo)為(1,3),且過點(diǎn)A(2,1).
(1)求拋物線解析式;
(2)若拋物線與x軸兩交點(diǎn)分別為點(diǎn)B、C,求線段BC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CF,連接EF.
(1)補(bǔ)充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com