【題目】已知二次函數(shù)的圖像經(jīng)過點(diǎn)(0,3)、(3,0)和(1,4).
(1)求該二次函數(shù)的表達(dá)式;
(2)若該二次函數(shù)圖像的頂點(diǎn)為P,與x軸分別交于點(diǎn)A、B,求△ABP的面積.
【答案】(1)y=-x2+2x+3;(2)8.
【解析】分析:(1)設(shè)二次函數(shù)解析式y=ax2+ax+c,把三點(diǎn)坐標(biāo)代入求出a,b,c的值,即可確定出二次函數(shù)解析式;(2)令y=0,求得點(diǎn)A,B的坐標(biāo),根據(jù)三角形的面積公式來求△ABP的面積.
本題解析:(1)設(shè)二次函數(shù)解析式y=ax2+ax+c,∵將點(diǎn)(0,3)、(3,0)和(1,4)
代入得 ,解得 ,∴y=-x2+2x+3;
(2)y=-x2+2x+3= -(x-1)+4, ∴p為二次函數(shù)頂點(diǎn),∴p(1,4),令y=0,即-x2+2x+3=0,(x-3)(x+1)=0, ,∴A,B兩點(diǎn)坐標(biāo)為(-1,0),(3,0),∴AB=4,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線AB與x軸、y軸相交于、兩點(diǎn),動(dòng)點(diǎn)C在線段OA上(不與O、A重合),將線段CB繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)得到CD,當(dāng)點(diǎn)D恰好落在直線AB上時(shí),過點(diǎn)D作軸于點(diǎn)E.
(1)求證,;
(2)如圖2,將沿x軸正方向平移得,當(dāng)直線經(jīng)過點(diǎn)D時(shí),求點(diǎn)D的坐標(biāo)及平移的距離;
(3)若點(diǎn)P在y軸上,點(diǎn)Q在直線AB上,是否存在以C、D、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的Q點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=24,BC=26,CA=14.順次連接△ABC各邊中點(diǎn),得到△A1B1C1;再順次連接△A1B1C1各邊中點(diǎn),得到△A2B2C2…如此進(jìn)行下去,得到,則△A8B8C8的周長(zhǎng)為( )
A.1B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=9,AC=6,BC=12,點(diǎn)M在AB邊上,且AM=3,過點(diǎn)M作直線MN與AC邊交于點(diǎn)N,使截得的三角形與原三角形相似,則MN=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,
請(qǐng)寫出各點(diǎn)的坐標(biāo).
若把向上平移2個(gè)單位,再向左平移1個(gè)單位得到,寫出、、的坐標(biāo),并在圖中畫出平移后圖形.
求出三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店經(jīng)營(yíng)某種水果,顧客的批發(fā)量x(kg)與批發(fā)單價(jià)y(元/kg)之間的關(guān)系如圖所示.圖中線段AB表示:批發(fā)量x每增加1 kg,批發(fā)單價(jià)y降低0.1元/kg.
(1)求m的值;
(2)已知該水果進(jìn)價(jià)為6元/kg,設(shè)該水果店獲利w元.
①求w與x的函數(shù)表達(dá)式;
②當(dāng)0<x≤m時(shí),求w的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解“陽光體育”活動(dòng)的開展情況,從全校2000名學(xué)生中,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查(每名學(xué)生只能填寫一項(xiàng)自己喜歡的活動(dòng)項(xiàng)目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學(xué)生共有 人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在扇形統(tǒng)計(jì)圖中,m= ,n= ,表示區(qū)域C的圓心角為 度;
(3)全校學(xué)生中喜歡籃球的人數(shù)大約有 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中, AO是∠BAC的角平分線, D為 AO上一點(diǎn),以 CD為一邊且在 CD下方作等邊△CDE,連接BE.
(1)求證:△ACD≌△BCE.
(2)延長(zhǎng)BE至Q, P為BQ上一點(diǎn),連接 CP、CQ使 CP=CQ=5,若 BC=6,求PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E.若BC=6,則DE的長(zhǎng)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com