在△ABC中,∠C>∠B,AE是△ABC中∠BAC的平分線;
(1)若AD是△ABC的BC邊上的高,且∠B=30°,∠C=70°(如圖1),求∠EAD的度數(shù);
(2)若F是AE上一點(diǎn),且FG⊥BC,垂足為G(如圖2),求證:∠EFG=
∠C-∠B2
;
(3)若F是AE延長線上一點(diǎn),且FG⊥BC,G為垂足(如圖3),②中結(jié)論是否依然成立?請給出你的結(jié)論,并說明理由.
分析:(1)根據(jù)三角形內(nèi)角和定理得∠A=180°-30°-70°=80°,再根據(jù)角平分線定義得∠EAC=
1
2
×80°=40°,由AD是△ABC的BC邊上的高,得∠ADC=90°,計(jì)算出∠DAC=90°-70°=20°,
則∠EAD=∠EAC-∠DAC=40°-20°=20°;
(2)根據(jù)三角形內(nèi)角和定理得∠A=180°-∠B-∠C,再根據(jù)角平分線定義得∠EAC=
1
2
(180°-∠B-∠C)=90°-
1
2
(∠B+∠C),而∠DAC=90°-∠C,可計(jì)算得∠EAD=∠EAC-∠DAC=90°-
1
2
(∠B+∠C)-90°+∠C=
1
2
(∠C-∠B),然后利用平行線的性質(zhì)得到結(jié)論;
(3)與(2)證明方法一樣.
解答:(1)解:∵∠B=30°,∠C=70°,
∴∠A=180°-30°-70°=80°,
∵AE是△ABC中∠BAC的平分線,
∴∠EAC=
1
2
×80°=40°,
∵AD是△ABC的BC邊上的高,
∴∠ADC=90°,
∴∠DAC=90°-70°=20°,
∴∠EAD=∠EAC-∠DAC=40°-20°=20°;

(2)證明:過A點(diǎn)作高AD,如圖,
∠A=180°-∠B-∠C,
∵AE是△ABC中∠BAC的平分線,
∴∠EAC=
1
2
(180°-∠B-∠C)=90°-
1
2
(∠B+∠C),
而∠DAC=90°-∠C,
∴∠EAD=∠EAC-∠DAC=90°-
1
2
(∠B+∠C)-90°+∠C=
1
2
(∠C-∠B),
∵FG⊥BC,
∴∠EFG=∠EAD,
∴∠EFG=
1
2
(∠C-∠B);

(3)②中結(jié)論依然成立.理由如下:過A點(diǎn)作高AD,如圖,
在(2)中得到∠EAD=
1
2
(∠C-∠B),
∵FG⊥BC,
∴∠EFG=∠EAD,
∴∠EFG=
1
2
(∠C-∠B).
點(diǎn)評:本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和為180°.也考查了三角形外角性質(zhì)以及三角形的高、角平分線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點(diǎn)O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點(diǎn)F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點(diǎn)D,交AC于點(diǎn)E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為( 。
A、
2
B、
3
C、2
D、以上都不對

查看答案和解析>>

同步練習(xí)冊答案