二次函數(shù)的圖象經(jīng)過點(1,0),(0,-3),且對稱軸是直線x=2.求此二次函數(shù).
分析:已知拋物線的對稱軸,可以設(shè)出函數(shù)的解析式是y=a(x-2)2+k,把(1,0),(0,-3)代入函數(shù)解析式即可求得函數(shù)解析式.
解答:解:設(shè)函數(shù)的解析式是y=a(x-2)2+k,根據(jù)題意得:
a+k=0
4a+k=-3
,
解得:
a=-1
k=1

則函數(shù)的解析式是y=-(x-2)2+1
點評:本題主要考查了待定系數(shù)法求二次函數(shù)的解析式,根據(jù)條件正確設(shè)出函數(shù)的一般形式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象經(jīng)過點A(3,0),B(2,-3),且對稱軸x=1,求這個二次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知關(guān)于x的方程2x2-3x+m+1=0.
①當(dāng)m<0時,求這個方程的根;
②如果這個方程沒有實數(shù)根,求m的取值范圍.
(2)二次函數(shù)的圖象經(jīng)過點(1,0),(0,5),(-1,8),求這個二次函數(shù)的解析式,并寫出圖象頂點的坐標(biāo).
(3)某公司有15名員工,他們所在的部門及相應(yīng)每人所創(chuàng)的年利潤如下表所示
 部門  人數(shù) 每人所創(chuàng)的年利潤(萬元) 
 A  1  20
 B  1  5
 C  2  2.5
 D  4  2.1
 E  2  1.5
 F  2  1.5
 G  3  1.2
根據(jù)表中提供的信息填空:
①該公司每人所創(chuàng)年利潤的平均數(shù)是
 
萬元;
②該公司每人所創(chuàng)年利潤的中位數(shù)是
 
萬元;
③你認(rèn)為應(yīng)該使用平均數(shù)和中位數(shù)中哪一個來描述該公司每人所創(chuàng)年利潤的一般水平?答:
 

(4)已知BE:EC=3:1,S△FBE=18,求S△FDA
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)的圖象經(jīng)過點A(0,3),B(2,-3),C(-1,0).
(1)求此二次函數(shù)的關(guān)系式;
(2)求此二次函數(shù)圖象的頂點坐標(biāo);
(3)填空:把二次函數(shù)的圖象沿坐標(biāo)軸方向最少平移
5
5
個單位,使得該圖象的頂點在原點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象經(jīng)過點(0,3),且頂點坐標(biāo)為(1,4).
(1)求這個函數(shù)關(guān)系式;
(2)在直角坐標(biāo)系中畫出它的圖象;
(3)當(dāng)x
3或-1
3或-1
時,函數(shù)值為0;當(dāng)x
<1
<1
時,y隨x的增大而增大,當(dāng)x
>1
>1
時,y隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象經(jīng)過點(0,3),頂點坐標(biāo)為(-4,19),求這個二次函數(shù)的解析式,以及圖象與x軸的交點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案