對面積為1的△ABC進行以下操作:分別延長AB、BC、CA至點A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1(如圖所示),記其面積為S1.現(xiàn)再分別延長A1B1、B1C1、C1A1至點A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C11A,順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2,則S2=
361
361
分析:根據(jù)等底的三角形高的比等于面積比推理出△A1B1C的面積是△A1BC面積的2倍,則△A1B1B的面積是△A1BC面積的3倍…,以此類推,得出△A2B2C2的面積.
解答:解:連接A1C,根據(jù)A1B=2AB,得到:AB:A1A=1:3,
因而若過點B,A1作△ABC與△AA1C的AC邊上的高,則高線的比是1:3,
因而面積的比是1:3,則△A1BC的面積是△ABC的面積的2倍,
設△ABC的面積是a,則△A1BC的面積是2a,
同理可以得到△A1B1C的面積是△A1BC面積的2倍,是4a,
則△A1B1B的面積是6a,
同理△B1C1C和△A1C1A的面積都是6a,
△A1B1C1的面積是19a,
即△A1B1C1的面積是△ABC的面積的19倍,
同理△A2B2C2的面積是△A1B1C1的面積的19倍,
∴S2=19×19×1=361.
故答案為:361.
點評:此題考查了三角形的面積,正確判斷相鄰的兩個三角形面積之間的關系是解決本題的關鍵,本題的難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、如圖,對面積為s的△ABC逐次進行以下操作:
第一次操作,分別延長AB、BC、CA至點A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;
第二次操作,分別延長A1B1、B1C1、C1A1至點A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,B2C1=2B1C1,順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2;
…;
按此規(guī)律繼續(xù)下去,可得到△AnBnCn,則其面積Sn=
19nS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,對面積為1的△ABC逐次進行以下操作:第一次操作,分別延長AB、BC、CA至點A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;第二次操作,分別延長A1B1、B1C1、C1A1至點A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2;…;按此規(guī)律繼續(xù)下去,可得到△A5B5C5,則其面積S5=
2476099
2476099

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

對面積為1的△ABC逐次進行以下操作:第一次操作,分別延長AB、BC、CA至點A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;第二次操作,分別延長A1B1、B1C1、C1A1至點A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2;…;按此規(guī)律繼續(xù)下去,可得到△AnBnCn
(1)求面積S1;(2)求面積Sn

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面資料:
小明遇到這樣一個問題:如圖1,對面積為a的△ABC逐次進行以下操作:分別延長AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.
小明是這樣思考和解決這個問題的:如圖2,連接A1C、B1A、C1B,因為A1B=2AB,B1C=2BC,C1A=2CA,根據(jù)等高兩三角形的面積比等于底之比,所以SA1BC=SB1CA=SC1AB=2S△ABC=2a,由此繼續(xù)推理,從而解決了這個問題.

(1)直接寫出S1=
19a
19a
(用含字母a的式子表示).
請參考小明同學思考問題的方法,解決下列問題:
(2)如圖3,P為△ABC內(nèi)一點,連接AP、BP、CP并延長分別交邊BC、AC、AB于點D、E、F,則把△ABC分成六個小三角形,其中四個小三角形面積已在圖上標明,求△ABC的面積.
(3)如圖4,若點P為△ABC的邊AB上的中線CF的中點,求S△APE與S△BPF的比值.

查看答案和解析>>

同步練習冊答案