解方程:
(1)9(x-3)2-49=0
(2)若a、b為實數(shù),且a、b是方程x2+5x+6=0的兩根,則P(a,b)關于原點對稱點Q的坐標是什么?
分析:(1)將系數(shù)化為1后方程左邊為完全平方式,然后利用數(shù)的開方來解答.
(2)先把方程分解因式得出(x+2)(x+3)=0,即得到方程x+2=0,x+3=0,求出方程的解即可得到P點的坐標,再根據(jù)兩個點關于原點對稱時,它們的坐標符號相反計算,即點P(x,y)關于原點O的對稱點是P′(-x,-y).
解答:解:(1)∵9(x-3)2-49=0
∴(x-3)2=
49
9

∴x-3=
7
3
或-
7
3
,
∴x1=
16
3
,x2=
2
3
;
(2)∵x2+5x+6=0,
∴(x+2)(x+3)=0,
∴x+2=0,x+3=0,
∴x1=-2,x2=-3,
又∵實數(shù)a、b是方程x2-3x-4=0的兩根,P(a,b),
∴P(-2,-3)或(-3,-2),
又∵點P關于原點O的對稱點Q,
∴Q點坐標為(2,3)或(3,2)
點評:本題考查了關于原點對稱的點的坐標以及因式分解法解一元二次方程、直接開平方法解一元二次方程.因式分解法解一元二次方程的一般步驟:①移項,使方程的右邊化為零;②將方程的左邊分解為兩個一次因式的乘積;③令每個因式分別為零,得到兩個一元一次方程;④解這兩個一元一次方程,它們的解就都是原方程的解.用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負,分開求得方程解”.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、解方程x2-|x|-2=0,
解:1.當x≥0時,原方程化為x2-x-2=0,解得:x1=2,x2=-1[不合題意,舍去].
2.當x<o時,原方程化為:x2+x-2=0,解得:x1=1,(不合題意,舍去)x2=-2.所以原方程的根為:x1=2,x2=-2
請參照例題解方程:x2-|x-1|-1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)解方程:4(x-1)=1-x
(2)解方程:
x+1
2
-
2-3x
3
=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項,得-3x+2x=8-1…③
合并同類項,得-x=7…④
∴x=-7…⑤
上述解方程的過程中,是否有錯誤?答:
 
;如果有錯誤,則錯在
 
步.如果上述解方程有錯誤,請你給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)
;
(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2
;
(3)
5
2x+3
=
3
x-1

(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算下列各題:
(1)先化簡再求值:
x2+x
x
÷(x+1)+
x2-x-2
x-2
,(其中x=-3).
(2)解方程
1
x+1
+
2
x-1
=
4
x2-1

查看答案和解析>>

同步練習冊答案