閱讀下列材料:
如圖1,在梯形ABCD中,AD∥BC,點M,N分別在邊AB,DC上,且MN∥AD,記AD=a,BC=b.若=,則有結論:MN=
請根據(jù)以上結論,解答下列問題:
如圖2,圖3,BE,CF是△ABC的兩條角平分線,過EF上一點P分別作△ABC三邊的垂線段PP1,PP2,PP3,交BC于點P1,交AB于點P2,交AC于點P3
(1)若點P為線段EF的中點.求證:PP1=PP2+PP3;
(2)若點P為線段EF上的任意位置時,試探究PP1,PP2,PP3的數(shù)量關系,并給出證明.

【答案】分析:(1)如答圖1所示,作輔助線,由角平分線性質(zhì)可知ER=ES,F(xiàn)M=FN;再由中位線性質(zhì)得到FM=2PP3,ER=2PP2;最后,在梯形FMRE中,援引題設結論,列出關系式,化簡得到:PP1=PP2+PP3
(2)如答圖2所示,作輔助線,由角平分線性質(zhì)可知ER=ES,F(xiàn)M=FN;再由相似三角形比例線段關系得到:ER=PP2;FM=PP3;最后,在梯形FMRE中,援引題設結論,列出關系式,化簡得到:PP1=PP2+PP3
解答:(1)證明:如答圖1所示,
BE為角平分線,過點E作ER⊥BC于點R,ES⊥AB于點S,則有ER=ES;
CF為角平分線,過點F作FM⊥BC于點M,F(xiàn)N⊥AC于點N,則有FM=FN.

點P為中點,由中位線的性質(zhì)可知:ES=2PP2,F(xiàn)N=2PP3
∴FM=2PP3,ER=2PP2
在梯形FMRE中,F(xiàn)M∥PP1∥ER,,
根據(jù)題設結論可知:
PP1====PP2+PP3
∴PP1=PP2+PP3

(2)探究結論:PP1=PP2+PP3
證明:如答圖2所示,
BE為角平分線,過點E作ER⊥BC于點R,ES⊥AB于點S,則有ER=ES;
CF為角平分線,過點F作FM⊥BC于點M,F(xiàn)N⊥AC于點N,則有FM=FN.

點P為EF上任意一點,不妨設,則,
∵PP2∥ES,∴=,∴ES=PP2
∵PP3∥FN,∴,∴FN=PP3
∴ER=PP2;FM=PP3
在梯形FMRE中,F(xiàn)M∥PP1∥ER,,
根據(jù)題設結論可知:
PP1====PP2+PP3
∴PP1=PP2+PP3
點評:本題是幾何綜合題,考查了相似三角形的判定與性質(zhì)、角平分線的性質(zhì).本題兩問之間體現(xiàn)了由特殊到一般的數(shù)學思想,解題思路類似,并且同學們可仔細領會.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料:
如圖表示我國農(nóng)村居民的小康生活水平實現(xiàn)程度地處西部某貧困縣,農(nóng)村人口約50萬,2002年農(nóng)村小康生活的綜合實現(xiàn)程度才達到68%,即沒有達到小康程度的人口約為(1-68%)×50萬=16萬.
解答下列問題:
(1)假設該縣計劃在2002年的基礎上,到2004年底,使沒有達到小康程度的16萬農(nóng)村人口降至10.24萬,那么平均每年降低的百分率是多少?
(2)如果該計劃實現(xiàn),2004年底該縣農(nóng)村小康進程接近圖中哪一年的水平?(假設該縣人口2年內(nèi)不變)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀下列材料:
如圖1,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2外公切線,A、B為切點,
求證:AC⊥BC
證明:過點C作⊙O1和⊙O2的內(nèi)公切線交AB于D,
∵DA、DC是⊙O1的切線
∴DA=DC.精英家教網(wǎng)
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根據(jù)上述材料,解答下列問題:
(1)在以上的證明過程中使用了哪些定理?請寫出兩個定理的名稱或內(nèi)容;
(2)以AB所在直線為x軸,過點C且垂直于AB的直線為y軸建立直角坐標系(如圖2),已知A、B兩點的坐標為(-4,0),(1,0),求經(jīng)過A、B、C三點的拋物線y=ax2+bx+c的函數(shù)解析式;
(3)根據(jù)(2)中所確定的拋物線,試判斷這條拋物線的頂點是否落在兩圓的連心O1O2上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在正方形ABCD中,E是AD的中點,F(xiàn)是BA延長線上的一點,AF=
12
AB
.(1)求證△ABE≌△ADF;
精英家教網(wǎng)
(2)閱讀下列材料:
如圖2,把△ABC沿直線BC平行移動線段BC的長度,可以變到△ECD的位置;
精英家教網(wǎng)
如圖3,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;
精英家教網(wǎng)
如圖4,以點A為中心把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.
精英家教網(wǎng)
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
(3)回答下列問題:
①在圖1中,可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法使△ABE變到△ADF的位置,
答:
 

②指出圖1中,線段BE與DF之間的關系.
答:
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•樂山)閱讀下列材料:
如圖1,在梯形ABCD中,AD∥BC,點M,N分別在邊AB,DC上,且MN∥AD,記AD=a,BC=b.若
AM
MB
=
m
n
,則有結論:MN=
bm+an
m+n

請根據(jù)以上結論,解答下列問題:
如圖2,圖3,BE,CF是△ABC的兩條角平分線,過EF上一點P分別作△ABC三邊的垂線段PP1,PP2,PP3,交BC于點P1,交AB于點P2,交AC于點P3
(1)若點P為線段EF的中點.求證:PP1=PP2+PP3;
(2)若點P為線段EF上的任意位置時,試探究PP1,PP2,PP3的數(shù)量關系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料:
如圖1,在四邊形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求證:CD=AB.
小剛是這樣思考的:由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求證及特殊角度數(shù)可聯(lián)想到構造特殊三角形.即過點A作AE⊥AB交BC的延長線于點E,則AB=AE,∠E=∠D.
在△ADC與△CEA中,
∠D=∠E
∠DAC=∠ECA=75°
AC=CA

∴△ADC≌△CEA,
得CD=AE=AB.
請你參考小剛同學思考問題的方法,解決下面問題:

如圖2,在四邊形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,請問:CD與AB是否相等?若相等,請你給出證明;若不相等,請說明理由.

查看答案和解析>>

同步練習冊答案