【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時停止運(yùn)動,則此時點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為( )
A. (,0) B. (2,0) C. (,0) D. (3,0)
【答案】C
【解析】解:過點(diǎn)B作BD⊥x軸于點(diǎn)D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,∵∠OAC=∠BCD,∠AOC=∠BDC,AC=BC,∴△ACO≌△BCD(AAS),∴OC=BD,OA=CD,∵A(0,2),C(1,0),∴OD=3,BD=1,∴B(3,1),∴設(shè)反比例函數(shù)的解析式為,將B(3,1)代入,∴k=3,∴,∴把y=2代入,∴x=,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時,此時點(diǎn)A移動了個單位長度,∴C也移動了個單位長度,此時點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為(,0).故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=,AB=8,AD=3,BC=4,點(diǎn)P為AB邊上一動點(diǎn),若△PAD與△PBC是相似三角形,則滿足條件的點(diǎn)P的個數(shù)是( 。
A. 1個
B. 2個
C. 3個
D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個幾何體的形狀為直三棱柱,右圖是它的主視圖和左視圖.
(1)請補(bǔ)畫出它的俯視圖,并標(biāo)出相關(guān)數(shù)據(jù);
(2)根據(jù)圖中所標(biāo)的尺寸(單位:厘米),計算這個幾何體的全面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=的圖象如圖所示,則以下結(jié)論:①m<0;②在每個分支上y隨x的增大而增大;③若點(diǎn)A(-1,a),點(diǎn)B(2,b)在圖象上,則a <b;④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(-x,y)也在圖象上.其中正確的個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)M(-3,2)分別作x軸、y軸的垂線與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),則四邊形MAOB的面積為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC為等邊三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,現(xiàn)有①點(diǎn)P在∠BAC的平分線上; ②AS=AR;③QP∥AR; ④△BRP≌△QSP四個結(jié)論.則對四個結(jié)論判斷正確的是( )
A. 僅①和②正確 B. 僅②③正確 C. 僅①和③正確 D. 全部都正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,正比例函數(shù)y=ax的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(3,2)
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象回答,在第一象限內(nèi),當(dāng)x取何值時,反比例函數(shù)的值大于正比例函數(shù)的值?
(3)點(diǎn)M(m,n)是反比例函數(shù)圖象上的一動點(diǎn),其中0<m<3,過點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過點(diǎn)A作直線AC∥y軸交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時,請判斷線段BM與DM的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)O,過O點(diǎn)作EF∥BC,交AB于E,交AC于F.
(1)判斷△BEO的形狀,并說明理由.
(2)若AB=5cm,AC=4cm,求△AEF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】向陽中學(xué)數(shù)學(xué)興趣小組對關(guān)于x的方程(m+1)+(m﹣2)x﹣1=0提出了下列問題:
(1)是否存在m的值,使方程為一元二次方程?若存在,求出m的值,并解此方程;
(2)是否存在m的值,使方程為一元一次方程?若存在,求出m的值,并解此方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com