(2012•鐵嶺)如圖所示,一個(gè)矩形區(qū)域ABCD,點(diǎn)E、F分別是AB、DC的中點(diǎn),求一只蝴蝶落在陰影部分的概率為
1
2
1
2
分析:從圖中可以看到圖形的中間是小長(zhǎng)方形,但是可以把它化為小三角形,故算出矩形共有多少個(gè)小三角形和陰影部分的三角形個(gè)數(shù)就很容易求解.
解答:解:從圖中可以知道此矩形的包括16個(gè)小三角形,其中陰影部分的小三角形有8個(gè),設(shè)小三角形的面積為S
故此蝴蝶落在陰影部分的概率為
陰影部分的面積
矩形的面積
=
8S
16S
=
1
2

故答案:
1
2
點(diǎn)評(píng):此題考查同學(xué)的看圖能力以及概率計(jì)算公式,從圖中找到題目中所要求的信息.用到的知識(shí)點(diǎn)為:概率=相應(yīng)的面積與總面積之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)如圖,在平面直角坐標(biāo)系中,△ABC經(jīng)過(guò)平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A′,則平移后點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為
(-2,1)
(-2,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)如圖,點(diǎn)E、F、G、H分別為菱形A1B1C1D1各邊的中點(diǎn),連接A1F、B1G、C1H、D1E得四邊形A2B2C2D2,以此類推得四邊形A3B3C3D3…,若菱形A1B1C1D1的面積為S,則四邊形AnBnCnDn的面積為
(
1
5
)
n-1
S或
S
5n-1
(
1
5
)
n-1
S或
S
5n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)如圖,AB為⊙O的直徑,弦CD垂直平分OB于點(diǎn)E,點(diǎn)F在AB延長(zhǎng)線上,∠AFC=30°.
(1)求證:CF為⊙O的切線.
(2)若半徑ON⊥AD于點(diǎn)M,CE=
3
,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)如圖,在斜坡AB上有一棵樹(shù)BD,由于受臺(tái)風(fēng)影響而傾斜,恰好與坡面垂直,在地面上C點(diǎn)處測(cè)得樹(shù)頂部D的仰角為60°,測(cè)得坡角∠BAE=30°,AB=6米,AC=4米.求樹(shù)高BD的長(zhǎng)是多少米?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對(duì)稱軸與x軸交于點(diǎn)D.直線y=-2x-1經(jīng)過(guò)拋物線上一點(diǎn)B(-2,m)且與y軸交于點(diǎn)C,與拋物線的對(duì)稱軸交于點(diǎn)F.
(1)求m的值及該拋物線對(duì)應(yīng)的解析式;
(2)P(x,y)是拋物線上的一點(diǎn),若S△ADP=S△ADC,求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對(duì)稱軸向上以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形?若能,請(qǐng)直接寫(xiě)出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案