【題目】為了了解市民“獲取新聞的最主要途徑”某市記者開(kāi)展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息解答下列問(wèn)題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是 ;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中,“電視”所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)若該市約有90萬(wàn)人,請(qǐng)你估計(jì)其中將“電腦和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù)。
【答案】(1)1000;圖形見(jiàn)解析. (2)540;(3) 59.4.
【解析】
(1)根據(jù)扇形統(tǒng)計(jì)圖的比例和條形圖的人數(shù)可求出總?cè)藬?shù),和從報(bào)紙獲取新聞的人數(shù)再補(bǔ)全條形圖即可。
(2)先計(jì)算出“電視”所占比例,然后再乘以整個(gè)圓心角的度數(shù)即可算出
(3)先計(jì)算出將“電腦和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的比例之和,再乘以總?cè)藬?shù)即可得
解:(1)1000
(
(2)54°
(3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:已知兩直線(xiàn),L1:y=k1x+b1,L2:y=k2x+b2,
若L1⊥L2,則有k1k2=﹣1,根據(jù)以上結(jié)論解答下列各題:
(1)已知直線(xiàn)y=2x+1與直線(xiàn)y=kx﹣1垂直,求k的值;
(2)若一條直線(xiàn)經(jīng)過(guò)A(2,3),且與y=﹣x+3垂直,求這條直線(xiàn)所對(duì)應(yīng)的一次函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是O的直徑,AE交O于點(diǎn)E,且與O的切線(xiàn)CD互相垂直,垂足為D.
(1)求證:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半徑;②求tan∠BAE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問(wèn)題:
已知:如圖,△ABC及AC邊的中點(diǎn)O。
求作:平行四邊形ABCD。
小敏的作法如下:
①連接BO并延長(zhǎng),在延長(zhǎng)線(xiàn)上截取OD=BO;
②連接DA,DC.
所以四邊形ABCD就是所求作的平行四邊形.
老師說(shuō):“小敏的作法正確.”
請(qǐng)回答:小敏的作法正確的理由是_________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是⊙O的切線(xiàn),切點(diǎn)為C.延長(zhǎng)AB交CD于點(diǎn)E.連接AC,作∠DAC=∠ACD,作AF⊥ED于點(diǎn)F,交⊙O于點(diǎn)G.
(1)求證:AD是⊙O的切線(xiàn);
(2)如果⊙O的半徑是6cm,EC=8cm,求GF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線(xiàn)l1與l2相交于點(diǎn)O,且∠1+∠3=2(∠2+∠4),求下列角的度數(shù).(1)∠2+∠4;(2)∠1,∠2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2=50°,EF∥DB.
(1)DG與AB平行嗎?請(qǐng)說(shuō)明理由.
(2)若EC平分∠FED,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分別為D,E,
(1)如圖1,
①線(xiàn)段CD和BE的數(shù)量關(guān)系是;
②請(qǐng)寫(xiě)出線(xiàn)段AD,BE,DE之間的數(shù)量關(guān)系 .
(2)如圖2,上述結(jié)論②還成立嗎?如果不成立,請(qǐng)直接寫(xiě)出線(xiàn)段AD,BE,DE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中, ∠B=60°,D、E分別為AB、BC上的點(diǎn),且AE、CD交于點(diǎn)F.
(1)如圖1,若AE、CD為△ABC的角平分線(xiàn). ①求證: ∠AFC=120°;②若AD=6,CE=4,求AC的長(zhǎng)?
(2)如圖2,若∠FAC=∠FCA=30°,求證:AD=CE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com