【題目】(本小題滿分10分)
如圖,在□ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長為16,AE=4,求∠C的大。
【答案】(1)詳見解析;(2)60°.
【解析】
試題分析:(1)由作圖過程可知,AB=AF,AE平分∠BAD,即可得∠BAE=∠EAF.再由四邊形ABCD為平行四邊形,可得BC∥AD,根據(jù)平行線的性質(zhì)可得∠AEB=∠EAF,所以∠BAE=∠AEB,根據(jù)等腰三角形的性質(zhì)可得AB=BE,即可得BE=AF,所以四邊形ABEF為平行四邊形,根據(jù)一組鄰邊相等的平行四邊形是菱形即可判定四邊形ABEF為菱形;(2)連接BF,已知四邊形ABEF為菱形,根據(jù)菱形的性質(zhì)可得BF與AE互相垂直平分,∠BAE=∠FAE,OA=AE=.再由菱形ABEF的周長為16,可得AF=4.所以cos∠OAF==.即可得∠OAF=30°,所以∠BAF=60°.再由平行線的性質(zhì)即可得∠C=∠BAD=60°.
試題解析:
(1)由作圖過程可知,AB=AF,AE平分∠BAD.∴∠BAE=∠EAF.
∵四邊形ABCD為平行四邊形,∴BC∥AD.∴∠AEB=∠EAF.
∴∠BAE=∠AEB,∴AB=BE.∴BE=AF.∴四邊形ABEF為平行四邊形.
∴四邊形ABEF為菱形.
(2)連接BF,
∵四邊形ABEF為菱形,∴BF與AE互相垂直平分,∠BAE=∠FAE.
∴OA=AE=.∵菱形ABEF的周長為16,∴AF=4.
∴cos∠OAF==.∴∠OAF=30°,∴∠BAF=60°.
∵四邊形ABCD為平行四邊形,∴∠C=∠BAD=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列正確說法的個數(shù)是( )
①同位角相等
②對頂角相等
③等角的補(bǔ)角相等
④同旁內(nèi)角相等,兩直線平行
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長為2的正方形ABCD在第一象限內(nèi),AB∥x軸,點A的坐標(biāo)為(5,3),己知直線l:y= x﹣2
(1)將直線l向上平移m個單位,使平移后的直線恰好經(jīng)過點A,求m的值
(2)在(1)的條件下,平移后的直線與正方形的邊長BC交于點E,求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(3,﹣2)關(guān)于x軸的對稱點是( 。
A. (3,2) B. (﹣3,﹣2) C. (﹣3,2) D. (3,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某專賣店專營某品牌的襯衫,店主對上一周中不同尺碼的襯衫銷售情況統(tǒng)計如下:
該店主決定本周進(jìn)貨時,增加一些41碼的襯衫,影響該店主決策的統(tǒng)計量是( )
A.平均數(shù) B.方差 C.眾數(shù) D.中位數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某公路檢測中心在一事故多發(fā)地帶安裝了一個測速儀,檢測點設(shè)在距離公路10m的A處,測得一輛汽車從B處行駛到C處所用的時間為0.9秒.已知∠B=30°,∠C=45°
(1)求B,C之間的距離;(保留根號)
(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線交軸于點,交軸正半軸于點,與過點的直線相交于另一點,過點作軸,垂足為.
(1)求拋物線的表達(dá)式;
(2)點在線段上(不與點、重合),過作軸,交直線于,交拋物線于點,連接,求面積的最大值;
(3)若是軸正半軸上的一動點,設(shè)的長為,是否存在,使以點為頂點的四邊形是平行四邊形?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】連續(xù)四次拋擲一枚硬幣都是正面朝上,則“第五次拋擲正面朝上”是( )
A.必然事件B.不可能事件C.隨機(jī)事件D.小概率事件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com