【題目】在平面內(nèi),將一副直角三角板按如圖所示的方式擺放,其中三角形ABC為含60°角的直角三角板,三角形BDE為含45°角的直角三角板.
(1)如圖1,若點(diǎn)D在AB上,則∠EBC的度數(shù)為 ;
(2)如圖2,若∠EBC=170°,則∠α的度數(shù)為 ;
(3)如圖3,若∠EBC=118°,求∠α的度數(shù);
(4)如圖3,若0°<∠α<60°,求∠ABE-∠DBC的度數(shù).
【答案】(1)150°;(2)20°;(3)32°;(4)30°.
【解析】
(1)根據(jù)角的和差即可得出結(jié)論;
(2)根據(jù)角的和差即可得出結(jié)論;
(3)根據(jù)角的和差即可得出結(jié)論.
(1)∵∠EBC=∠EBD+∠ABC,
∴∠EBC=90°+60°=150°.
(2)∵∠EBC=∠EBD+∠DBA+∠ABC,
∴∠α=∠EBC-∠EBD-∠ABC=170°-90°-60°=20°;
(3)∵∠EBC=∠EBD+∠DBC=∠EBD+∠ABC-∠α,
∴∠α=∠EBD+∠ABC-∠EBC=90°+60°-118°=32°;
(4)∵∠ABE=∠DBE-∠α=90°-∠α,∠DBC=∠ABC-∠α=60°-∠α,
∴∠ABE-∠DBC=(90°-∠α)-(60°-∠α)=90°-∠α-60°+∠α=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn).
(1)求證:拋物線(xiàn)與軸必定有公共點(diǎn);
(2)若P(,y1),Q(-2,y2)是拋物線(xiàn)上的兩點(diǎn),且y1y2,求的取值范圍;
(3)設(shè)拋物線(xiàn)與x軸交于點(diǎn)、,點(diǎn)A在點(diǎn)B的左側(cè),與y軸負(fù)半軸交于點(diǎn)C,且,若點(diǎn)D是直線(xiàn)BC下方拋物線(xiàn)上一點(diǎn),連接AD交BC于點(diǎn)E,記△ACE的面積為S1,△DCE的面積為S2,求是否有最值?若有,求出該最值;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖的轉(zhuǎn)盤(pán)被劃分成六個(gè)相同大小的扇形,并分別標(biāo)上1,2,3,4,5,6這六個(gè)數(shù)字,指針停在每個(gè)扇形的可能性相等。四位同學(xué)各自發(fā)表了下述見(jiàn)解:
甲:如果指針前三次都停在了3號(hào)扇形,下次就一定不會(huì)停在3號(hào)扇形;
乙:只要指針連續(xù)轉(zhuǎn)六次,一定會(huì)有一次停在6號(hào)扇形;
丙:指針停在奇數(shù)號(hào)扇形的概率與停在偶數(shù)號(hào)扇形的概率相等;
丁:運(yùn)氣好的時(shí)候,只要在轉(zhuǎn)動(dòng)前默默想好讓指針停在6號(hào)扇形,指針停在6號(hào)扇形的可能性就會(huì)加大。
其中,你認(rèn)為正確的見(jiàn)解有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)對(duì)本校500名畢業(yè)生中考體育加試測(cè)試情況進(jìn)行調(diào)查,根據(jù)男生1 000m及女生800m測(cè)試成績(jī)整理、繪制成如下不完整的統(tǒng)計(jì)圖(圖①、圖②),請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問(wèn)題:
(1)該校畢業(yè)生中男生有________人,女生有________人;
(2)扇形統(tǒng)計(jì)圖中a=________,b=________;
(3)補(bǔ)全條形統(tǒng)計(jì)圖(不必寫(xiě)出計(jì)算過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A,B在數(shù)軸上表示的數(shù)如圖所示. 動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸向右以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到點(diǎn)B,再?gòu)狞c(diǎn)B以同樣的速度運(yùn)動(dòng)到點(diǎn)A停止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,解答下列問(wèn)題.
(1)當(dāng)t=2時(shí),AP= 個(gè)單位長(zhǎng)度,當(dāng)t=6時(shí),AP= 個(gè)單位長(zhǎng)度;
(2)直接寫(xiě)出整個(gè)運(yùn)動(dòng)過(guò)程中AP的長(zhǎng)度(用含t的代數(shù)式表示);
(3)當(dāng)AP=6個(gè)單位長(zhǎng)度時(shí),求t的值;
(4)當(dāng)點(diǎn)P運(yùn)動(dòng)到線(xiàn)段AB的3等分點(diǎn)時(shí),t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果兩個(gè)角之差的絕對(duì)值等于45°,則稱(chēng)這兩個(gè)角互為“半余角”,即若|∠α-∠β |=45°,則稱(chēng)∠α、∠β互為半余角.(注:本題中的角是指大于0°且小于180°的角)
(1)若∠A=80°,則∠A的半余角的度數(shù)為 ;
(2)如圖1,將一長(zhǎng)方形紙片ABCD沿著MN折疊(點(diǎn)M在線(xiàn)段AD上,點(diǎn)N在線(xiàn)段CD上)使點(diǎn)D落在點(diǎn)D′處,若∠AMD′與∠DMN互為“半余角”,求∠DMN的度數(shù);
(3)在(2)的條件下,再將紙片沿著PM折疊(點(diǎn)P在線(xiàn)段BC上),點(diǎn)A、B分別落在點(diǎn)A′、B′處,如圖2.若∠AMP比∠DMN大5°,求∠A′MD′的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)若和是同類(lèi)項(xiàng),則m=_____,n=_________。
(2)單項(xiàng)式的系數(shù)是_______,次數(shù)是_______。
(3)多項(xiàng)式是_______次_______項(xiàng)式,其中第二項(xiàng)的系數(shù)是________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過(guò)或不足的千克數(shù)分別用正、負(fù)數(shù)來(lái)表示,記錄如下:
⑴20筐白菜中,最重的一筐比最輕的一筐多重多少千克?
⑵與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)超過(guò)或不足多少千克?
⑶若白菜每千克售價(jià)1.6元,則出售這20筐白菜可賣(mài)多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由個(gè)棱長(zhǎng)都為的小正方體搭成的幾何體.
(1)請(qǐng)?jiān)谙旅娣礁窦堉蟹謩e畫(huà)出它的左視圖和俯視圖;
(2)該幾何體的表面積為___________;
(3)如果在這個(gè)幾何體上再添加一些相同的小正方體,并保持這個(gè)幾何體的左視圖 和俯視圖不變,那么最多可以添加___________個(gè)小正方體.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com