【題目】小紅將筆記本電腦水平放置在桌子上,顯示屏OB與底板OA所在水平線的夾角為120°,感覺最舒適(如圖1),側(cè)面示意圖為圖2.使用時(shí)為了散熱,她在底板下墊入散熱架ACO′后,電腦轉(zhuǎn)到AO′B′位置(如圖3),側(cè)面示意圖為圖4.已知OA=OB=24cm,O′C⊥OA于點(diǎn)C,O′C=12cm.
(1)求∠CAO′的度數(shù).
(2)顯示屏的頂部B′比原來升高了多少?
(3)如圖4,墊入散熱架后,要使顯示屏O′B與水平線的夾角仍保持120°,則顯示屏O′B′應(yīng)繞點(diǎn)O′按順時(shí)針方向旋轉(zhuǎn)多少度?
【答案】解:(1)∵O′C⊥OA于C,OA=OB=24cm,
∴sin∠CAO′=,
∴∠CAO′=30°;
(2)過點(diǎn)B作BD⊥AO交AO的延長線于D
∵sin∠BOD=,
∴BD=OBsin∠BOD,
∵∠AOB=120°,
∴∠BOD=60°,
∴BD=OBsin∠BOD=24×=12,
∵O′C⊥OA,∠CAO′=30°,
∴∠AO′C=60°,
∵∠AO′B′=120°,
∴∠AO′B′+∠AO′C=180°,
∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,
∴顯示屏的頂部B′比原來升高了(36﹣12)cm;
(3)顯示屏O′B′應(yīng)繞點(diǎn)O′按順時(shí)針方向旋轉(zhuǎn)30°,
理由:∵顯示屏O′B與水平線的夾角仍保持120°,
∴∠EO′F=120°,
∴∠FO′A=∠CAO′=30°,
∵∠AO′B′=120°,
∴∠EO′B′=∠FO′A=30°,
∴顯示屏O′B′應(yīng)繞點(diǎn)O′按順時(shí)針方向旋轉(zhuǎn)30°.
【解析】(1)通過解直角三角形即可得到結(jié)果;
(2)過點(diǎn)B作BD⊥AO交AO的延長線于D,通過解直角三角形求得BD=OBsin∠BOD=24×=12 , 由C、O′、B′三點(diǎn)共線可得結(jié)果;
(3)顯示屏O′B′應(yīng)繞點(diǎn)O′按順時(shí)針方向旋轉(zhuǎn)30°,求得∠EO′B′=∠FO′A=30°,既是顯示屏O′B′應(yīng)繞點(diǎn)O′按順時(shí)針方向旋轉(zhuǎn)30°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.
(1)化簡:2B﹣A;
(2)已知﹣a|x﹣2|b2與aby的同類項(xiàng),求2B﹣A的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE是圓O的直徑,A在EB的延長線上,AP為圓O的切線,P為切點(diǎn),弦PD垂直于BE于點(diǎn)C.
(1)求證:∠AOD=∠APC;
(2)若OC:CB=1:2,AB=6,求圓O的半徑及tan∠APB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩位同學(xué)將一個(gè)二次三項(xiàng)式因式分解,一位同學(xué)因看錯(cuò)了一次項(xiàng)系數(shù)而分解成2,另一位同學(xué)因看錯(cuò)了常數(shù)項(xiàng)而分解成2,請將原多項(xiàng)式因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道不等式的兩邊加(或減)同一個(gè)數(shù)(或式子),不等號的方向不變.不等式組是否也具有類似的性質(zhì)呢?請解答下列問題.
(1)完成下列填空:
已知 | 用“<”或“>”填空 |
5+2_____3+1 | |
﹣3﹣1_____﹣5﹣2 | |
1﹣2_____4+1 |
(2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).請你說明上述性質(zhì)的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(3)寫出點(diǎn)A1,B1,C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天放學(xué)后,小紅步行,小麗騎自行車沿同一條筆直的馬路到圖書館看書,圖中線段OA、BC分別表示小紅、小麗離開學(xué)校的路程s(米)與小紅所用的時(shí)間t(分鐘)的函數(shù)關(guān)系,根據(jù)圖象解答下列問題:
(1)小麗比小紅遲出發(fā) 分鐘,小紅步行的速度是 米/分鐘;(直接寫出結(jié)果)
(2)兩人在路上相距不超過200米的時(shí)間有多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了“文明在我身邊”攝影比賽.已知每幅參賽作品成績記為x分(60≤x<100).校方從600幅參賽作品中隨機(jī)抽取了部分參賽作品,統(tǒng)計(jì)了它們的成績,并繪制了如下不完整的統(tǒng)計(jì)圖表.
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 18 | 0.36 |
70≤x<80 | 17 | c |
80≤x<90 | a | 0.24 |
90≤x<100 | b | 0.06 |
合計(jì) | 1 |
根據(jù)以上信息解答下列問題:
(1)統(tǒng)計(jì)表中c的值為________;樣本成績的中位數(shù)落在分?jǐn)?shù)段________中;
(2)補(bǔ)全頻數(shù)直方圖;
(3)若80分以上(含80分)的作品將被組織展評,試估計(jì)全校被展評的作品數(shù)量是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com