如圖,正方形ABCD內(nèi)接于等腰直角三角形PQR,則=   
【答案】分析:先求出AD與QR的比值,也就是△PAD與△PQR的相似比,再列出比例式整理即可.
解答:解:∵四邊形ABCD是正方形ABCD,
∴AD∥QR
∴△PAD∽△PQR,
∴PA:PQ=AD:QR,
設(shè)正方形ABCD的邊長是a,
則AD=a,
∴AB=BC=CD=a,
∵△PQR等腰直角三角形,
∴∠Q=∠R=45°,
∴△ABQ與△CDR是等腰直角三角形,
∴BQ=CR=BC=a,
因而PA:PQ=1:3,
=2.
故答案為2.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)比較多,注意到本題中△PAD,△ABQ,△CDR都是等腰直角三角形,是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案