二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)是(
1
2
,
25
4
)
,它與 x 軸的一個(gè)交點(diǎn)B的坐標(biāo)是(-2,0),另一個(gè)交點(diǎn)的是C,它與y 軸相交于D,O為坐標(biāo)原點(diǎn).試問(wèn):y軸上是否存在點(diǎn)P,使得△POB∽△DOC?若存在,試求出過(guò)P、B 兩點(diǎn)的直線的解析式;若不存在,說(shuō)明理由.
分析:先根據(jù)條件利用待定系數(shù)法求出拋物線的解析式,然后根據(jù)解析式求出點(diǎn)D,點(diǎn)C的坐標(biāo),最后根據(jù)相似三角形的性質(zhì)求出點(diǎn)P的坐標(biāo),根據(jù)P、B兩點(diǎn)的坐標(biāo)利用待定系數(shù)法就可以求出直線PB的解析式.
解答:解:∵二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)是(
1
2
,
25
4
)
,它與 x 軸的一個(gè)交點(diǎn)B的坐標(biāo)是(-2,0),
∴設(shè)拋物線的解析式為:y=a(x-
1
2
)2+
25
4
將點(diǎn)B(-2,0)代入得,
0=a(-2-
1
2
)
2
+
25
4
,解得
a=-1
∴拋物線的解析式為:y=-x2+x+6.
當(dāng)x=0時(shí),y=6
∴D(0,6),
∴OD=6
y=0時(shí),x1=-2,x2=3
C(3,0),
∴OC=3,
∵B(-2,0),
∴OB=2.
∵△POB∽△DOC,
PO
OB
=
DO
OC
,
PO
2
=
6
3

∴PO=4
∴P(0,4)或P(0,-4),
設(shè)直線PB的解析式為:y=kx+b,
0=-2k+b
4=b
0=-2k+b
-4=b
,解得:
k=2
b=4
k=-2
b=-4

求得直線PB的解析式為:y=2x+4或y=-2x-4.
點(diǎn)評(píng):本題是一道二次函數(shù)的綜合試題,考查了運(yùn)用待定系數(shù)法求二次函數(shù)的解析式和求一次函數(shù)的解析式,相似三角形的判定及性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為(3,-2)且與y軸交于(0,
5
2

(1)求這個(gè)二次函數(shù)的解析式,并畫(huà)于它的圖象;
(2)若這拋物線經(jīng)過(guò)點(diǎn)(2,y1),(-1,y2),(
7
2
,y3)
,試比較y1,y2,y3的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).

(1)求該二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長(zhǎng)最小時(shí),點(diǎn)K的坐標(biāo)為     

(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度沿折線OAC按O→A→C的路線運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長(zhǎng)度的速度沿折線OCA按O→C→A的路線運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.

①請(qǐng)問(wèn)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在PQ∥OC?若存在,

請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;

②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;

③設(shè)S0是②中函數(shù)S的最大值,直接寫(xiě)出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).

(1)求該二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長(zhǎng)最小時(shí),點(diǎn)K的坐標(biāo)為     ;

(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度沿折線OAC按O→A→C的路線運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長(zhǎng)度的速度沿折線OCA按O→C→A的路線運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.

①請(qǐng)問(wèn)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在PQ∥OC?若存在,

請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;

②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;

③設(shè)S0是②中函數(shù)S的最大值,直接寫(xiě)出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年浙江杭州蕭山黨灣鎮(zhèn)初中九年級(jí)12月質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).

(1)求該二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長(zhǎng)最小時(shí),點(diǎn)K的坐標(biāo)為    ;

(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度沿折線OAC按O→A→C的路線運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長(zhǎng)度的速度沿折線OCA按O→C→A的路線運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.

①請(qǐng)問(wèn)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在PQ∥OC?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;

②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;

③設(shè)S0是②中函數(shù)S的最大值,直接寫(xiě)出S0的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(內(nèi)蒙古呼和浩特卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).

(1)求該二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長(zhǎng)最小時(shí),點(diǎn)K的坐標(biāo)為    ;

(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度沿折線OAC按O→A→C的路線運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長(zhǎng)度的速度沿折線OCA按O→C→A的路線運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.

①請(qǐng)問(wèn)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在PQ∥OC?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;

②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;

③設(shè)S0是②中函數(shù)S的最大值,直接寫(xiě)出S0的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案