【題目】小明從家去上學,先步行一段路,因時間緊,他改騎共享單車,結果到學校時遲到了7min,其行駛的路程(單位:)與時間(單位:)的關系如圖.若他出門時直接騎共享單車(兩次騎車速度相同),則下列說法正確的是( )
A.小明會遲到2min到校B.小明剛好按時到校
C.小明可以提前1min到校D.小明可以提前2min到校
科目:初中數(shù)學 來源: 題型:
【題目】已知,是⊙O的直徑,弦垂直平分,垂足為,連接.
(1)如圖1,求的度數(shù);
(2)如圖2,點分別為上一點,并且,連接,交點為G,R為上一點,連接與交于點H,,求證:;
(3)如圖3,在(2)的條件下,,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在Rt△ABC中,∠C=90°,AC=BC=,直線L過AB中點O,過點A、C分別向直線L作垂線,垂足分別為E、F.若CF=1,則EF=__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,∠C=90°,AC=15,BC=20,經(jīng)過點C的⊙O與△ABC的每條邊都相交.⊙O與AC邊的另一個公共點為D,與BC邊的另一個公共點為E,與AB邊的兩個公共點分別為F、G.設⊙O的半徑為r.
(操作感知)
(1)根據(jù)題意,僅用圓規(guī)在圖①中作出一個滿足條件的⊙O,并標明相關字母;
(初步探究)
(2)求證:CD2+CE2=4r2;
(3)當r=8時,則CD2+CE2+FG2的最大值為 ;
(深入研究)
(4)直接寫出滿足題意的r的取值范圍;對于范圍內每一個確定的r的值,CD2+CE2+FG2都有最大值,每一個最大值對應的圓心O所形成的路徑長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某課外學習小組根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質進行了探究請補充完整以下探索過程:
(1)列表:
x | … | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | m | 0 | -3 | -4 | -3 | 0 | -3 | -4 | n | 0 | … |
直接寫出________,________;
(2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標系內補全該函數(shù)的圖象,并結合圖象寫出該函數(shù)的兩條性質:
性質1______________________________________________________
性質2_______________________________________________________
(3)若方程有四個不同的實數(shù)根,請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由邊長為1的小正方形構成的網(wǎng)格,每個小正方形的頂點叫做格點.的頂點在格點上,僅用無刻度尺的直尺在給定網(wǎng)格中畫圖,畫圖過程用虛線表示,畫圖結果用實線表示,按步驟完成下列問題:
(1)將邊繞點順時針旋轉90°得到線段;
(2)畫邊的中點;
(3)連接并延長交于點,直接寫出的值;
(4)在上畫點,連接,使.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線y=x與雙曲線y=(k≠0)的一個交點為P(,n).將直線向上平移b(0>0)個單位長度后,與x軸,y軸分別交于點A,點B,與雙曲線的一個交點為Q.若AQ=3AB,則b=____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形的頂點、在軸上(在的左側),頂點、在軸上方,對角線的長是,點為的中點,點在菱形的邊上運動.當點到所在直線的距離取得最大值時,點恰好落在的中點處,則菱形的邊長等于( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在練習操控航拍無人機,該型號無人機在上升和下落時的速度相同,設無人機的飛行高度為y(米),小明操控無人飛機的時間為x(分),y與x之間的函數(shù)圖象如圖所示.
(1)無人機上升的速度為 米/分,無人機在40米的高度上飛行了 分.
(2)求無人機下落過程中,y與x之間的函數(shù)關系式.
(3)求無人機距地面的高度為50米時x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com