【題目】已知二次函數y=﹣2x2+bx+c的圖象經過點(0,6)和(1,8).
(1)求這個二次函數的解析式;
(2)①當x在什么范圍內時,y隨x的增大而增大?
②當x在什么范圍內時,y>0?
【答案】(1)y=﹣2x2+4x+6;(2)①當x<1時,y隨x的增大而增大;②當﹣1<x<3時,y>0
【解析】
(1)根據二次函數y=﹣2x2+bx+c的圖象經過點(0,6)和(1,8),可以求得該拋物線的解析式;
(2)①根據(1)求得函數解析式,將其化為頂點式,然后根據二次函數的性質即可得到x在什么范圍內時,y隨x的增大而增大;
②根據(1)中的函數解析式可以得到x在什么范圍內時,y>0.
(1)∵二次函數y=﹣2x2+bx+c的圖象經過點(0,6)和(1,8),
∴,得,
即該二次函數的解析式為y=﹣2x2+4x+6;
(2)①∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,
∴該函數的對稱軸是x=1,函數圖象開口向下,
∴當x<1時,y隨x的增大而增大;
②當y=0時,0=﹣2x2+4x+6=﹣2(x﹣3)(x+1),
解得,x1=3,x2=﹣1,
∴當﹣1<x<3時,y>0.
科目:初中數學 來源: 題型:
【題目】在四邊形ABCD中,對角線AC、BD相交于點O,設銳角∠DOC=α,將△DOC按逆時針方向旋轉得到△D′OC′(0°<旋轉角<90°)連接AC′、BD′,AC′與BD′相交于點M.
(1)當四邊形ABCD是矩形時,如圖1,請猜想AC′與BD′的數量關系以及∠AMB與α的大小關系,并證明你的猜想;
(2)當四邊形ABCD是平行四邊形時,如圖2,已知AC=kBD,請猜想此時AC′與BD′的數量關系以及∠AMB與α的大小關系,并證明你的猜想;
(3)當四邊形ABCD是等腰梯形時,如圖3,AD∥BC,此時(1)AC′與BD′的數量關系是否成立?∠AMB與α的大小關系是否成立?不必證明,直接寫出結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點P是△ABC的重心,過P作AB的平行線DE,分別交AC于點D,交BC于點E,作DF//BC,交AB于點F,若四邊形BEDF的面積為4,則△ABC的面積為__________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B的坐標分別為(0,8),(10,0),動點C,D分別在OA,OB上且CD=8,以CD為直徑作⊙P交AB于點E,F.動點C從點O向終點A的運動過程中,線段EF長的變化情況為( 。
A.一直不變B.一直變大
C.先變小再變大D.先變大再變小
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AB=4,BC=8,∠ABC=60°.點P是邊BC上一動點,作△PAB的外接圓⊙O交BD于E.
(1)如圖1,當PB=3時,求PA的長以及⊙O的半徑;
(2)如圖2,當∠APB=2∠PBE時,求證:AE平分∠PAD;
(3)當AE與△ABD的某一條邊垂直時,求所有滿足條件的⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=2,AB=,以點A為圓心,AD為半徑的圓與BC相切于點E,交AB于點F.
(1)求∠ABE的大小及的長度;
(2)在BE的延長線上取一點G,使得上的一個動點P到點G的最短距離為,求BG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,賓館大廳的天花板上掛有一盞吊燈AB,某人從C點測得吊燈頂端A的仰角為,吊燈底端B的仰角為,從C點沿水平方向前進6米到達點D,測得吊燈底端B的仰角為.請根據以上數據求出吊燈AB的長度.(結果精確到0.1米.參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別以△ABC的邊AC和BC為腰向外作等腰直角△DAC和等腰直角△EBC,連接DE.
(1)求證:△DAC∽△EBC;
(2)求△ABC與△DEC的面積比.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com