【題目】如圖,將矩形紙片沿折疊,使點與點重合,再將沿折疊,使點恰好落在上的點處.若,則的長為_____

【答案】

【解析】

根據(jù)折疊的性質(zhì)可以證明DEM≌△DCN,得DM=DN,再根據(jù)折疊可得∠BNM=DNM=DNC,可證明DMN是等邊三角形,再根據(jù)等邊三角形的性質(zhì)即可求出AD的長.

由折疊可知:

B與點D重合,

∴∠EDN=90°,

∵四邊形ABCD是矩形,

∴∠ADC=90°,

∴∠EDM+MDN=CDN+MDN

∴∠EDM=CDN,

∵∠E=C=90°,

DE=DC,

∴△DEM≌△DCNASA),

DM=DN,

由折疊,

BNM=DNM,∠DNC=DNM

∴∠BNM=DNM=DNC=×180°=60°,

∴△DMN是等邊三角形,

DM=MN=5,

C恰好落在MN上的點F處可知:

DFN=90°,即DFMN,

MF=NF=MN=,

CN=ME=AM=,

AD=AM+DM=

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點,經(jīng)過點,與軸分別交于兩點.

1)求該拋物線的解析式;

2)如圖1,點是拋物線上的一個動點,且在直線的下方,過點軸的平行線與直線交于點,當(dāng)取最大值時,求點的坐標;

3)如圖2,軸交軸于點,點是拋物線上,之間的一個動點,直線分別交于,,當(dāng)點運動時.

①直接寫出的值;

②直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,,點是線段上的一個動點,以點為圓心,為半徑作,連接.

(1)當(dāng)經(jīng)過的中點時,的長為_ ;

(2)當(dāng)平分時,判斷的位置關(guān)系.說明理由,并求出的長;

3)如圖2,當(dāng)交于兩點,且時,求點的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為4,EF、G、H分別是AB、BCCD、DA上的點,且AEBFCGDH.設(shè)AE兩點間的距離為x,四邊形EFGH的面積為y,則yx的函數(shù)圖象可能是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C是⊙O的直徑AB延長線上一點,過⊙O上一點DDFABF,交⊙O于點E,點MBE的中點,AB4,∠E=∠C30°

1)求證:CD是⊙O的切線;

2)求DM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

問題情境

數(shù)學(xué)活動課上,老師讓同學(xué)們以“三角形的旋轉(zhuǎn)”為主題開展數(shù)學(xué)活動,是兩個全等的直角三角形紙片,其中,

解決問題

1)如圖①,智慧小組將繞點順時針旋轉(zhuǎn),發(fā)現(xiàn)當(dāng)點恰好落在邊上時,,請你幫他們證明這個結(jié)論;

2)縝密小組在智慧小組的基礎(chǔ)上繼續(xù)探究,連接,當(dāng)C繞點繼續(xù)旋轉(zhuǎn)到如圖②所示的位置時,他們提出,請你幫他們驗證這一結(jié)論是否正確,并說明理由;

探索發(fā)現(xiàn)

3)如圖③,勤奮小組在前兩個小組的啟發(fā)下,繼續(xù)旋轉(zhuǎn),當(dāng)三點共線時,求的長;

4)在圖①的基礎(chǔ)上,寫出一個邊長比為的三角形(可添加字母).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.

求出每天的銷售利潤與銷售單價之間的函數(shù)關(guān)系式;

求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?

如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,,點是線段上的一個動點,以點為圓心,為半徑作,連接.

(1)當(dāng)經(jīng)過的中點時,的長為_ ;

(2)當(dāng)平分時,判斷的位置關(guān)系.說明理由,并求出的長;

3)如圖2,當(dāng)交于兩點,且時,求點的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚泰山文化,某校舉辦了泰山詩文大賽活動,從中隨機抽取部分學(xué)生的比賽成績,根據(jù)成績(成績都高于50分),繪制了如下的統(tǒng)計圖表(不完整):

組別

分數(shù)

人數(shù)

1

90x≤100

8

2

80x≤90

a

3

70x≤80

10

4

60x≤70

b

5

50x≤60

3

請根據(jù)以上信息,解答下列問題:

1)求出a,b的值;

2)計算扇形統(tǒng)計圖中5所在扇形圓心角的度數(shù);

3)若該校共有1800名學(xué)生,那么成績高于80分的共有多少人?

查看答案和解析>>

同步練習(xí)冊答案