精英家教網 > 初中數學 > 題目詳情
如圖,四邊形ABCD是正方形,CE=MN,∠MCE=35°,那么∠ANM等于______.
作NF⊥BC于F.
則在直角△BEC和直角△FMN中,∠B=∠NFM=90°,
∴在Rt△BEC和Rt△FMN中,
CE=MN
BC=FN
,
∴△BEC≌△FMN
∴∠MNF=∠MCE=35°
∴∠ANM=90°-∠MNF=55°
故答案是:55°
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,等腰梯形ABCD中,ADBC,AB=DC,AC⊥BD,過D點作DEAC交BC的延長線于E點.
(1)求證:四邊形ACED是平行四邊形;
(2)若AD=3,BC=7,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,正方形ABCD的頂點B、C都在直角坐標系的x軸上,若點D的坐標是(3,4),則點B的坐標是______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,一個正方形擺放在桌面上,則正方形的邊長為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=
5
.下列結論:
①△APD≌△AEB;
②點B到直線AE的距離為
2
;
③EB⊥ED;
④S△APD+S△APB=1+
6
;
⑤S正方形ABCD=4+
6
.其中正確結論的序號是(  )
A.①③④B.①②⑤C.③④⑤D.①③⑤

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

在正方形ABCD中,點E為BC邊的中點,點B′與點B關于AE對稱,B′B與AE交于點F,連接AB′,DB′,FC.下列結論:①AB′=AD;②△FCB′為等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正確的是( 。
A.①②B.①②④C.③④D.①②③④

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,正方形ABCD中,E,F分別在對角線AC,BD上,且CE=BF,連接AF,BE,并延長AF交BE于點G,
求證:AG⊥EB.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長為1,點E是射線DA一動點(DE>1),連結BE,以BE為邊在BE上方作正方形BEFG,設M為正方形BEFG的中心,如果定義:只有一組對角是直角的四邊形叫做損矩形.
(1)試找出圖中的一個損矩形并簡單說明理由.
(2)連接AM,無論點E位置怎樣變化,求證:DBAM.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,E是正方形ABCD的邊CD延長線上的任意一點,CF⊥AE于點F,交AD于點H.求∠DHE的度數.

查看答案和解析>>

同步練習冊答案