【題目】如圖,在△ABC中,PM、QN分別是AB、AC的垂直平分線,∠BAC=100°那么∠PAQ等于( )
A. 50° B. 40° C. 30° D. 20°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圖形中,所有四邊形都是正方形,所有的三角形都是直角三角形,其中最大正方形邊長為7cm,設(shè)正方形A、B、C、D、E、F面積分別為SA、SB、SC、SD、SE、SF,則下列各式正確有()個.
① SA+SB+SC+SD=49;② SE+SF=49;③ SA+SB+SF=49;④ SC+SD+SE=4
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB<BC,E為CD邊的中點,將△ADE繞點E順時針旋轉(zhuǎn)180°,點D的對應(yīng)點為C,點A的對應(yīng)點為F,過點E作ME⊥AF交BC于點M,連接AM、BD交于點N,現(xiàn)有下列結(jié)論:
①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數(shù)為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條公路上順次有A、B、C三地,甲、乙兩車同時從A地出發(fā),分別勻速前往B地,C地,甲車到達(dá)B地停留一段時間后原速原路返回,乙車到達(dá)C地后立即原速原路返回,乙車比甲車早1小時返回A地,甲、乙兩車各自行駛的路程y(千米)與時間x(時)(從兩車出發(fā)時開始計時)之間的圖象如圖所示.
(1)在上述變化過程中,自變量是 ,因變量是 .
(2)乙車行駛的速度為 千米/小時;
(3)甲車到達(dá)B地停留了多久?B地與C地之間的距離為多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的兩條中線AD、BE交于點F,連接CF,若△ABC的面積為24,則△ABF的面積為( )
A. 10 B. 8 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點P(x,y),若點Q的坐標(biāo)為(ax+y,x+ay),其中a為常數(shù),則稱點Q是點P的“a級關(guān)聯(lián)點”例如,點P(1,4)的“3級美聯(lián)點”為Q(3+4,1+3),即Q(7,13).
(1)已知點A(一2,6)的“級關(guān)聯(lián)點”是點,求點的坐標(biāo)。
(2)已知點M(m一1,2m)的“一3級關(guān)聯(lián)點”M’位于y軸上.求點M’的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E
使AE∥BC,連接AE。
(1)求證:四邊形ADCE是矩形;
(2)①若AB=17,BC=16,則四邊形ADCE的面積= ;
②若AB=10,則BC= 時,四邊形ADCE是正方形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=x+3交x軸于點A,交y軸于點B,點C是點A關(guān)于y軸對稱的點,過點C作y軸平行的射線CD,交直線AB與點D,點P是射線CD上的一個動點.
(1)求點A,B的坐標(biāo).
(2)如圖2,將△ACP沿著AP翻折,當(dāng)點C的對應(yīng)點C′落在直線AB上時,求點P的坐標(biāo).
(3)若直線OP與直線AD有交點,不妨設(shè)交點為Q(不與點D重合),連接CQ,是否存在點P,使得S△CPQ=2S△DPQ,若存在,請求出對應(yīng)的點Q坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com