【題目】移動(dòng)互聯(lián)網(wǎng)是現(xiàn)代通信平臺(tái),可以實(shí)現(xiàn)手機(jī)之間的私密互聯(lián),任意兩臺(tái)手機(jī)私密互聯(lián)構(gòu)成一條連接通路.
(1)若臺(tái)手機(jī)、、同時(shí)私密互聯(lián),請(qǐng)畫(huà)出圖形,并用線段表示構(gòu)成的所有連接通路:
(2)若臺(tái)手機(jī)、、、同時(shí)私密互聯(lián),形成幾條連接通路?
(3)若臺(tái)手機(jī)同時(shí)私密互聯(lián),形成幾條連接通路?請(qǐng)用含的式子表示.
【答案】(1)圖見(jiàn)解析;(2)6;(3).
【解析】
(1)根據(jù)題意,畫(huà)圖即可;
(2)根據(jù)題意,畫(huà)圖即可;
(3)根據(jù)(1)(2)中得到的規(guī)律,歸納公式即可.
解:(1)根據(jù)題意,連接AB、AC、BC即可,如圖所示,線段AB、AC、BC即為所求;
(2)根據(jù)題意,連接DE、DF、DG、EF、EG、FG
如圖所示:若臺(tái)手機(jī)、、、同時(shí)私密互聯(lián),形成6條連接通路;
(3)由(1)(2)可知:若3臺(tái)手機(jī)同時(shí)私密互聯(lián),形成3=(2+1)條連接通路;
若臺(tái)手機(jī)同時(shí)私密互聯(lián),形成6=(3+2+1)條連接通路;
同理:若5臺(tái)手機(jī)同時(shí)私密互聯(lián),形成10=(4+3+2+1)條連接通路;
故若n臺(tái)手機(jī)同時(shí)私密互聯(lián),形成(n-1+n-2+……+2+1)=條連接通路.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一組數(shù)據(jù):x1,x2,x3,x4,x5,x6的平均數(shù)是2,方差是3,則另一組數(shù)據(jù):3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2,3x6﹣2的平均數(shù)和方差分別是( 。
A. 2,3 B. 2,9 C. 4,25 D. 4,27
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明學(xué)習(xí)了《有理數(shù)》后,對(duì)運(yùn)算非常感興趣,于是定義了一種新運(yùn)算“△”規(guī)則如下:對(duì)于兩個(gè)有理數(shù)m , n , m △ n =.
(1)計(jì)算:1△(-2)= ;
(2)判斷這種新運(yùn)算是否具有交換律,并說(shuō)明理由;
(3)若a =| x-1| , a =| x-2|,求a△ a (用含 x 的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在抗洪搶險(xiǎn)中,人民解放軍的沖鋒舟沿東西方向的河流搶救災(zāi)民,早晨從地出發(fā),晚上最后到達(dá)地,約定向東為正方向,當(dāng)天航行依次記錄如下(單位:千米),,,,,,,,問(wèn):
(1)地在地的東面,還是西面?與地相距多少千米?
(2)這一天沖鋒舟離最遠(yuǎn)多少千米?
(3)若沖鋒舟每千米耗油升,郵箱容量為升,求途中至少需要補(bǔ)充多少升油?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:a是最大的負(fù)整數(shù),b是最小的正整數(shù),且c=a+b,請(qǐng)回答下列問(wèn)題:
(1)請(qǐng)直接寫(xiě)出a,b,c的值:a= ;b= ;c= ;
(2)a,b,c在數(shù)軸上所對(duì)應(yīng)的點(diǎn)分別為A,B,C,請(qǐng)?jiān)谌鐖D的數(shù)軸上表示出A,B,C三點(diǎn);
(3)在(2)的情況下.點(diǎn)A,B,C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A,點(diǎn)C以每秒1個(gè)單位的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B以每秒5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,請(qǐng)問(wèn):AB﹣BC的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出AB﹣BC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,,點(diǎn)為邊上一點(diǎn),連接交對(duì)角線于點(diǎn).
(1)如圖1,已知于,菱形的邊長(zhǎng)為6,求線段的長(zhǎng)度;
(2)如圖2,已知點(diǎn)為邊上一點(diǎn),連接交線段于點(diǎn),且滿(mǎn)足,,求證:.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列推理,并填寫(xiě)完理由
已知,如圖,∠BAE+∠AED=180°,∠M=∠N,
試說(shuō)明:
解:∵∠BAE+∠AED=180(已知)
∴ ∥ ( )
∴∠BAE= ( 兩直線平行,內(nèi)錯(cuò)角相等 )
又∵∠M=∠N。ㄒ阎
∴ ∥ ( )
∴∠NAE= ( )
∴∠BAE-∠NAE= - ( )
即∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩校參加區(qū)教育局舉辦的學(xué)生英語(yǔ)口語(yǔ)競(jìng)賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績(jī)分別為7分、8分、9分、10分(滿(mǎn)分為10分).依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計(jì)圖表.
(1)在圖1中,“7分”所在扇形的圓心角等于 .
(2)請(qǐng)你將圖2的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)經(jīng)計(jì)算,乙校的平均分是8.3分,中位數(shù)是8分,請(qǐng)寫(xiě)出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個(gè)學(xué)校成績(jī)較好.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面內(nèi)由極點(diǎn)、極軸和極徑組成的坐標(biāo)系叫做極坐標(biāo)系.如圖,在平面上取定一點(diǎn)O稱(chēng)為極點(diǎn);從點(diǎn)O出發(fā)引一條射線Ox稱(chēng)為極軸;線段OP的長(zhǎng)度稱(chēng)為極徑.點(diǎn)P的極坐標(biāo)就可以用線段OP的長(zhǎng)度以及從Ox轉(zhuǎn)動(dòng)到OP的角度(規(guī)定逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)角度為正)來(lái)確定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,則點(diǎn)P關(guān)于點(diǎn)O成中心對(duì)稱(chēng)的點(diǎn)Q的極坐標(biāo)表示不正確的是( 。
A. Q(3,-120°)B. Q(3,240°)C. Q(3,-500°)D. Q(3,600°)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com