【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請畫出△ABC關(guān)于y軸對稱的△DEF(其中D,E,F分別是A,B,C的對應(yīng)點(diǎn),不寫畫法);
(2)直接寫出D,E,F三點(diǎn)的坐標(biāo):D( ),E( ),F( );
(3)在y軸上存在一點(diǎn),使PC﹣PB最大,則點(diǎn)P的坐標(biāo)為 .
【答案】(1)如圖,△DEF即為所求作三角形;見解析;(2)點(diǎn)D(1,5)、E(1,0)、F(4,3);(3)點(diǎn)P坐標(biāo)為(0,﹣1),
【解析】
(1)分別作出點(diǎn)A、B、C關(guān)于y軸對稱點(diǎn)D、E、F,即可得△DEF;
(2)根據(jù)(1)中圖形可得坐標(biāo);
(3)延長CB交y軸于P,點(diǎn)P即為所求,待定系數(shù)法求直線BC所在直線解析式,即可知其與y軸的交點(diǎn)P的坐標(biāo).
(1)如圖,△DEF即為所求作三角形;
(2)由圖可知點(diǎn)D(1,5)、E(1,0)、F(4,3),
故答案為:1,5;1,0;4,3;
(3)延長CB交y軸于P,此時(shí)PC﹣PB最大,故點(diǎn)P即為所求,
設(shè)BC所在直線解析式為y=kx+b,
將點(diǎn)B(﹣1,0)、點(diǎn)C(﹣4,3)代入,得:,
解得:,
∴直線BC所在直線解析式為y=﹣x﹣1,
當(dāng)x=0時(shí),y=﹣1,
∴點(diǎn)P坐標(biāo)為(0,﹣1),
故答案為:(0,﹣1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在東西方向的海岸線MN上有A,B兩艘船,船長都收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東60°方向36海里處,船P在船B頂點(diǎn)北偏西37°方向,若船A,船B分別以30海里/小時(shí),20海里/小時(shí)的速度同時(shí)出發(fā),勻速前往救援,通過計(jì)算判斷哪艘船先到達(dá)船P處.(參考數(shù)據(jù)=1.73,sin37°=0.6,cos37°=0.80)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線的部分圖象如圖,則下列說法:①對稱軸是直線;②當(dāng)時(shí),;③;④方程無實(shí)數(shù)根,其中正確的有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到,△EFG由△ABC沿CB方向平移得到,且直線EF過點(diǎn)D.
(1)求∠BDF的大。
(2)求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)過程中,對教材中的一個(gè)有趣問題做如下探究:
(習(xí)題回顧)已知:如圖1,在△ABC中,∠ACB=90°,AE是角平分線,CD是高,AE、CD相交于點(diǎn)F.求證:∠CFE=∠CEF;
(變式思考)如圖2,在△ABC中,∠ACB=90°,CD是AB邊上的高,若△ABC的外角∠BAG的平分線交CD的延長線于點(diǎn)F,其反向延長線與BC邊的延長線交于點(diǎn)E,則∠CFE與∠CEF還相等嗎?說明理由;
(探究廷伸)如圖3,在△ABC中,在AB上存在一點(diǎn)D,使得∠ACD=∠B,角平分線AE交CD于點(diǎn)F.△ABC的外角∠BAG的平分線所在直線MN與BC的延長線交于點(diǎn)M.試判斷∠M與∠CFE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=130°,AB的垂直平分線ME交BC于點(diǎn)M,交AB于點(diǎn)E,AC的垂直平分線NF交BC于點(diǎn)N,交AC于點(diǎn)F,則∠MAN為( )
A.80°B.70°C.60°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中.AB=AC.∠BAC=36°.BD是∠ABC的平分線,交AC于點(diǎn)D,E是AB的中點(diǎn),連接ED并延長,交BC的延長線于點(diǎn)F,連接AF.求證:(1)EF⊥AB; (2)△ACF為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校從兩名優(yōu)秀選手中選一名參加全市中小學(xué)運(yùn)動會的男子米跑項(xiàng)目,該校預(yù)先對這兩名選手測試了次,測試成績?nèi)缦卤?/span>
甲的成績(秒) | ||||||||
乙的成績(秒) |
為了衡量這兩名選手米跑的水平,你選擇哪些統(tǒng)計(jì)量?請分別求出這些統(tǒng)計(jì)量的值.
你認(rèn)為選派誰比較合適?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,埃航客機(jī)失事后,國家主席親自發(fā)電進(jìn)行慰問,埃及政府出動了多艘艦船和飛機(jī)進(jìn)行搜救,其中一艘潛艇在海面下米的點(diǎn)處測得俯角為的前下方海底有黑匣子信號發(fā)出,繼續(xù)沿原方向直線航行米后到達(dá)點(diǎn),在處測得俯角為的前下方海底有黑匣子信號發(fā)出,求海底黑匣子點(diǎn)距離海面的深度(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com