【題目】為響應國家的“節(jié)能減排”政策,某廠家開發(fā)了一種新型的電動車,如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°和31°,AT⊥MN,垂足為T,大燈照亮地面的寬度BC的長為m.

1)求BT的長(不考慮其他因素).

(2)一般正常人從發(fā)現(xiàn)危險到做出剎車動作的反應時間是0.2s,從發(fā)現(xiàn)危險到電動車完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車,從做出剎車動作到電動車停止的剎車距離是請判斷該車大燈的設計是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計),并說明理由.

(參考數(shù)據(jù):sin22°tan22°,sin31°tan31°

【答案】該車大燈的設計不能滿足最小安全距離的要求,理由詳見解析.

【解析】試題分析:1)在直角中,根據(jù)三角函數(shù)的定義,若 中利用三角函數(shù)即可列方程求解;
2)求出正常人作出反應過程中電動車行駛的路程,加上剎車距離,然后與的長進行比較即可.

試題解析:

1)根據(jù)題意及圖知:

中,

可設

中,

,

即: ,

解得: ,

,

;

,

, ,

∴該車大燈的設計不能滿足最小安全距離的要求.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】碭山酥梨是一種馳名中外的特色水果,它是梨的一種,因為出產(chǎn)于碭山縣而得名,F(xiàn)有20筐碭山酥梨,以每筐25千克的質(zhì)量為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:

(1)20筐碭山酥梨中,最重的一筐比最輕的一筐重多少千克?

(2)與標準質(zhì)量比較,這20筐碭山酥梨總計超過或不足多少千克?

(3)若碭山酥梨每千克售價4元,則這20筐碭山酥梨可賣多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請任選一題作答:

(A)已知正比例函數(shù)與反比例函數(shù)的圖象都經(jīng)過點(2,1).求這兩個函數(shù)關(guān)系式.

(B)已知函數(shù)y = y1 +y2,y1x成正比例,y2x成反比例,且當x = 1時,y =1;當x = 3時,y = 5.y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知兩個關(guān)于x的一元二次方程M ;N ,其中,有下列三個結(jié)論:

①若方程M有兩個相等的實數(shù)根,則方程N也有兩個相等的實數(shù)根;

②若6是方程M的一個根,則是方程N的一個根;

③若方程M和方程N有一個相同的根,則這個根一定是其中正確結(jié)論的個數(shù)是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,EDC邊上一個動點,FAB邊上一點,∠AEF=30°.設DE=x,圖中某條線段長為y,yx滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的(  ).

A. 線段EC B. 線段AE C. 線段EF D. 線段BF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對某一個函數(shù)給出如下定義:若存在實數(shù),對于任意的函數(shù)值,都滿足,則稱這個函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1

1)分別判斷函數(shù)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;

2)若函數(shù)的邊界值是2,且這個函數(shù)的最大值也是2,求的取值范圍;

3)將函數(shù)的圖象向下平移個單位,得到的函數(shù)的邊界值是,當在什么范圍時,滿足

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的中線BDCE交于點O,FG分別是BO,CO的中點.

1)求證:四邊形DEFG是平行四邊形;

2)若ABAC,則四邊形DEFG (填寫特殊的平行四邊形);

3)當四邊形DEFG為邊長為2的正方形時,的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:中,,求證:,下面寫出可運用反證法證明這個命題的四個步驟:

①∴,這與三角形內(nèi)角和為矛盾,②因此假設不成立.∴,③假設在中,,④由,得,即.這四個步驟正確的順序應是(  )

A.③④②①B.③④①②C.①②③④D.④③①②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點C⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)求證:BC=AB;

3)點M是弧AB的中點,CMAB于點N,若AB=4,求MNMC的值.

查看答案和解析>>

同步練習冊答案