【題目】如圖,平行四邊形ABCD中,AC、BD相交于點(diǎn)O,E、F是對角線BD上的點(diǎn),且BE=DF,連接AE、CE、CF、AF

1)求證:AE=CF

2)若平行四邊形ABCD的面積是12,OCF的面積是2,求ADF的面積.

【答案】1)見解析;(21

【解析】

1)通過平行四邊形的性質(zhì)和平行線的性質(zhì)得出,然后利用SAS證明,則結(jié)論可證.

2)過點(diǎn)AAGBD于點(diǎn)G,過點(diǎn)CCHBD于點(diǎn)H,首先證明,然后得出,然后利用面積之間的關(guān)系得出, ,最后利用即可得出答案.

1)∵四邊形ABCD是平行四邊形,

,

中,

;

2)如圖,過點(diǎn)AAGBD于點(diǎn)G,過點(diǎn)CCHBD于點(diǎn)H

,

∵四邊形ABCD是平行四邊形,

,

中,

底相等,高也相等,所以面積也相等,

底相同,高相等,所以面積也相等,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.

1)已知△ABC是比例三角形,AB=2,BC=3,請直接寫出所有滿足AC條件的長;

2)如圖,點(diǎn)A在以BC為直徑的圓上,BD平分∠ABC,ADBC,∠ADC=90°

①求證:△ABC為比例三角形;

②求的值.

3)若以點(diǎn)C為頂點(diǎn)的拋物線y=mx2-4mx-12m(m0)x軸交于A、B兩點(diǎn),△ABC是比例三角形,若點(diǎn)M(x0,y0)為該拋物線上任意一點(diǎn),總有n-≤-my02-40y0+298成立,求實(shí)數(shù)n的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)Cx軸的負(fù)半軸上,點(diǎn)Ay軸正半軸上,矩形OABC的面積為8.把矩形OABC沿DE翻折,使點(diǎn)B與點(diǎn)O重合,點(diǎn)C落在第三象限的G點(diǎn)處,作EHx軸于H,過E點(diǎn)的反比例函數(shù)y圖象恰好過DE的中點(diǎn)F.則k_____,線段EH的長為:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AD6EAB的中點(diǎn),將ADE沿DE翻折得到FDE,延長EFBCGFHBC,垂足為H,延長DFBC與點(diǎn)M,連接BF、DG.以下結(jié)論:①∠BFD+ADE=180°;②△BFM為等腰三角形;③△FHB∽△EAD;④BE=2FMSBFG2.6 sinEGB;其中正確的個數(shù)是(  )

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB是⊙O的直徑,點(diǎn)C在⊙O上,且∠CAB=30°,設(shè)點(diǎn)D是線段AC上任意一點(diǎn)(不含端點(diǎn)),連接OD,當(dāng)CD+OD的最小值為9時,則⊙O的直徑AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,點(diǎn)D、E分別在ABAC上,,

求證:;

,把繞點(diǎn)A逆時針旋轉(zhuǎn)到圖2的位置,點(diǎn)M,PN分別為DE,DCBC的中點(diǎn),連接MNPM,PN

判斷的形狀,并說明理由;

繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若,,試問面積是否存在最大值;若存在,求出其最大值若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的做法是這樣的:如圖,

①利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON

②利用兩個三角板,分別過點(diǎn)M,NOM,ON的垂線,交點(diǎn)為P;

③畫射線OP.則射線OP為∠AOB的平分線.

(1)請寫出射線OP為∠AOB的平分線的證明過程.

(2)請根據(jù)你的證明過程,寫出小林的畫法的依據(jù)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCAD=BC=2ABFAD的中點(diǎn),作CEAB,垂足E在線段AB上,連接EF、CF

1)若∠ADC=80°,求∠ECF;

2)求證:∠ECF=CEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富校園文化,某學(xué)校決定舉行學(xué)生趣味運(yùn)動會,將比賽項目確定為袋鼠跳、夾球跑、跳大繩、綁腿跑和拔河賽五種.為了解學(xué)生對這五項運(yùn)動的喜歡情況,隨機(jī)調(diào)查了該校a名學(xué)生最喜歡的一種項目(每名學(xué)生必選且只能選擇五項中的一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表:

學(xué)生最喜歡的活動項目的人數(shù)統(tǒng)計表

項目

學(xué)生數(shù)(名)

百分比(%

袋鼠跳

45

15

夾球跑

30

c

跳大繩

75

25

綁腿跑

b

m

拔河賽

90

30

根據(jù)圖表中提供的信息,解答下列問題:

1a   ,b   ,c   

2)請將條形統(tǒng)計圖補(bǔ)充完整;

3)根據(jù)調(diào)查結(jié)果,請你估計該校3000名學(xué)生中有多少名學(xué)生最喜歡綁腿跑.

查看答案和解析>>

同步練習(xí)冊答案