【題目】在如圖平面直角坐標(biāo)系中,矩形的頂點(diǎn)的坐標(biāo)為,、分別落在軸和軸上,是矩形的對角線. 將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)落在軸上,得到,與相交于點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn),交于點(diǎn).
(1)求的值和點(diǎn)的坐標(biāo);
(2)連接,則圖中是否存在與相似的三角形?若存在,請把它們一一找出來,并選其中一種進(jìn)行證明;若不存在,請說明理由;
(3)在線段上存在這樣的點(diǎn),使得是等腰三角形,請直接寫出點(diǎn)的坐標(biāo).
【答案】(1),G;(2),, ,證明見解析;(3) 或或
【解析】
(1)證明△COF∽△AOB,則,求得:點(diǎn)F的坐標(biāo)為(1,2),即可求解;
(2)△COF∽△BFG;△AOB∽△BFG;△ODE∽△BFG;△CBO∽△BFG.證△OAB∽△BFG:,即可求解.
(3)分GF=PF、PF=PG、GF=PG三種情況,分別求解即可.
(1)∵四邊形為矩形,點(diǎn)的坐標(biāo)為,
∴,
∵是旋轉(zhuǎn)得到的,即:,
∴,
∴,
∴,
∴,
∴,
∴點(diǎn)的坐標(biāo)為,
∵的圖象經(jīng)過點(diǎn),
∴,得,
∵點(diǎn)在上,
∴點(diǎn)的橫坐標(biāo)為4,
對于,當(dāng),得,
∴點(diǎn)的坐標(biāo)為;
(2);; ;.
下面對進(jìn)行證明:
∵點(diǎn)的坐標(biāo)為,
∴,
∵,
∴,
.
∴,.
∴,
∵,
∴.
(3)設(shè)點(diǎn),而點(diǎn)、點(diǎn),
則,,,
當(dāng)時(shí),即,解得: (舍去負(fù)值);
當(dāng)時(shí),同理可得:;
當(dāng)時(shí),同理可得: (舍去正值);
綜上,點(diǎn)的坐標(biāo)為或或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,E,F分別是線段CD和線段BA延長線上的動點(diǎn),沿直線EF折疊使點(diǎn)D的對應(yīng)點(diǎn)D′落在BC上,連接AD′,DD′,當(dāng)△ADD′是以DD′為腰的等腰三角形時(shí),DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,直角三角板ABC中,∠C=90°,AC=BC,將一個(gè)用足夠長的的細(xì)鐵絲制作的直角的頂點(diǎn)D放在直角三角板ABC的斜邊AB上,再將該直角繞點(diǎn)D旋轉(zhuǎn),并使其兩邊分別與三角板的AC邊、BC邊交于P、Q兩點(diǎn).
問題探究:(1)在旋轉(zhuǎn)過程中,
①如圖2,當(dāng)AD=BD時(shí),線段DP、DQ有何數(shù)量關(guān)系?并說明理由.
②如圖3,當(dāng)AD=2BD時(shí),線段DP、DQ有何數(shù)量關(guān)系?并說明理由.
③根據(jù)你對①、②的探究結(jié)果,試寫出當(dāng)AD=nBD時(shí),DP、DQ滿足的數(shù)量關(guān)系為_______________(直接寫出結(jié)論,不必證明)
(2)當(dāng)AD=BD時(shí),若AB=20,連接PQ,設(shè)△DPQ的面積為S,在旋轉(zhuǎn)過程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,請說明理由.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達(dá)到了3600元.
(1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長率;
(2)若年平均增長率保持不變,2019年該貧困戶的家庭年人均純收入是否能達(dá)到4200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)小方格都是邊長為1個(gè)單位的小正方形,點(diǎn)A、B、C都是格點(diǎn)每個(gè)小方格的頂點(diǎn)叫格點(diǎn),其中,,.
外接圓的圓心坐標(biāo)是______;
外接圓的半徑是______;
已知與點(diǎn)D、E、F都是格點(diǎn)成位似圖形,則位似中心M的坐標(biāo)是______;
請?jiān)诰W(wǎng)格圖中的空白處畫一個(gè)格點(diǎn),使∽,且相似比為:1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進(jìn),廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計(jì),目前廣東5G基站的數(shù)量約1.5萬座,計(jì)劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬座。
(1)計(jì)劃到2020年底,全省5G基站的數(shù)量是多少萬座?;
(2)按照計(jì)劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解居民的環(huán)保意識,社區(qū)工作人員在光明小區(qū)隨機(jī)抽取了若干名居民開展主題為“打贏藍(lán)天保衛(wèi)戰(zhàn)”的環(huán)保知識有獎(jiǎng)問答活動,并用得到的數(shù)據(jù)繪制了如圖條形統(tǒng)計(jì)圖(得分為整數(shù),滿分為10分,最低分為6分)請根據(jù)圖中信息,解答下列問題:
(1)本次調(diào)查一共抽取了 名居民;
(2)直接寫出本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)為 ,中位數(shù)為 ;
(3)社區(qū)決定對該小區(qū)1500名居民開展這項(xiàng)有獎(jiǎng)問答活動,得10分者設(shè)為“一等獎(jiǎng)”,請你根據(jù)調(diào)查結(jié)果,幫社區(qū)工作人員估計(jì)需準(zhǔn)備多少份“一等獎(jiǎng)”獎(jiǎng)品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c過點(diǎn)A(3, 0)、點(diǎn)B(0, 3).點(diǎn)M(m, 0)在線段OA上(與點(diǎn)A、O不重合),過點(diǎn)M作x軸的垂線與線段AB交于點(diǎn)P,與拋物線交于點(diǎn)Q,聯(lián)結(jié)BQ.
(1)求拋物線表達(dá)式;
(2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時(shí),求PQ的長度;
(3)當(dāng)△PBQ為等腰三角形時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,∠BAC=90°,AB=AC.
(1)如圖1,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AD,連結(jié)CD、BD,∠BAC的平分線交BD于點(diǎn)E,連結(jié)CE.
①求證:∠AED=∠CED;
②用等式表示線段AE、CE、BD之間的數(shù)量關(guān)系(直接寫出結(jié)果);
(2)在圖2中,若將線段AC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到AD,連結(jié)CD、BD,∠BAC的平分線交BD的延長線于點(diǎn)E,連結(jié)CE.請補(bǔ)全圖形,并用等式表示線段AE、CE、BD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com