【題目】如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉(zhuǎn)90°后,得到△A′O′B,且反比例函數(shù)y= 的圖象恰好經(jīng)過斜邊A′B的中點C,若SABO=4,tan∠BAO=2,則k=

【答案】6
【解析】解:設(shè)點C坐標為(x,y),作CD⊥BO′交邊BO′于點D,
∵tan∠BAO=2,
=2,
∵SABO= AOBO=4,
∴AO=2,BO=4,
∵△ABO≌△A'O'B,
∴AO=A′O′=2,BO=BO′=4,
∵點C為斜邊A′B的中點,CD⊥BO′,
∴CD= A′O′=1,BD= BO′=2,
∴x=BO﹣CD=4﹣1=3,y=BD=2,
∴k=xy=32=6.
所以答案是6.

【考點精析】利用反比例函數(shù)的圖象和旋轉(zhuǎn)的性質(zhì)對題目進行判斷即可得到答案,需要熟知反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標上1、2、3,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.
(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個游戲是否公平?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,過點A(0,4)的圓的圓心坐標為C(2,0),B是第一象限圓弧上的一點,且BC⊥AC,拋物線y= x2+bx+c經(jīng)過C、B兩點,與x軸的另一交點為D.

(1)點B的坐標為( , ),拋物線的表達式為;
(2)如圖2,求證:BD∥AC;
(3)如圖3,點Q為線段BC上一點,且AQ=5,直線AQ交⊙C于點P,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 與x軸交于點A和點B,與y軸交于點C,已知點B的坐標為(3,0).

(1)求a的值和拋物線的頂點坐標;
(2)分別連接AC、BC.在x軸下方的拋物線上求一點M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對稱軸上的一個動點,d=|AN﹣CN|.探究:是否存在一點N,使d的值最大?若存在,請直接寫出點N的坐標和d的最大值;若不存在,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 與x軸交于點A和點B,與y軸交于點C,已知點B的坐標為(3,0).

(1)求a的值和拋物線的頂點坐標;
(2)分別連接AC、BC.在x軸下方的拋物線上求一點M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對稱軸上的一個動點,d=|AN﹣CN|.探究:是否存在一點N,使d的值最大?若存在,請直接寫出點N的坐標和d的最大值;若不存在,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結(jié)AD.
(1)求證:∠DAC=∠DBA;
(2)求證:P是線段AF的中點;
(3)連接CD,若CD﹦3,BD﹦4,求⊙O的半徑和DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生社團為了解本校學(xué)生喜歡球類運動的情況,隨機抽取了若干名學(xué)生進行問卷調(diào)查,要求每位學(xué)生只能填寫一種自己喜歡的球類運動,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖.
請根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
(1)參加調(diào)查的人數(shù)共有人;在扇形圖中,m=;將條形圖補充完整;
(2)如果該校有3500名學(xué)生,則估計喜歡“籃球”的學(xué)生共有多少人?
(3)該社團計劃從籃球、足球和乒乓球中,隨機抽取兩種球類組織比賽,請用樹狀圖或列表法,求抽取到的兩種球類恰好是“籃球”和“足球”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,10個不同的正偶數(shù)按下圖排列,箭頭上方的每個數(shù)都等于其下方兩數(shù)的和,如 ,表示a1=a2+a3 , 則a1的最小值為(
A.32
B.36
C.38
D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)當(dāng)天,小明帶了四個粽子(除味道不同外,其它均相同),其中兩個是大棗味的,另外兩個是火腿味的,準備按數(shù)量平均分給小紅和小剛兩個好朋友.
(1)請你用樹狀圖或列表的方法表示小紅拿到的兩個粽子的所有可能性.
(2)請你計算小紅拿到的兩個粽子剛好是同一味道的概率.

查看答案和解析>>

同步練習(xí)冊答案