【題目】在△ABC中,AB=4,BC=2,∠ABC=45°,以AB為一邊作等腰直角三角形ABD,使∠ABD=90°,連接CD,則線段CD的長為_____.
【答案】2或2.
【解析】
分①點(diǎn)A、D在BC的兩側(cè),設(shè)AD與邊BC相交于點(diǎn)E,根據(jù)等腰直角三角形的性質(zhì)求出AD,再求出BE=DE=AD并得到BE⊥AD,然后求出CE,在Rt△CDE中,利用勾股定理列式計(jì)算即可得解;②點(diǎn)A、D在BC的同側(cè),根據(jù)等腰直角三角形的性質(zhì)可得BD=AB,過點(diǎn)D作DE⊥BC交BC的反向延長線于E,判定△BDE是等腰直角三角形,然后求出DE=BE,再求出CE,然后在Rt△CDE中,利用勾股定理列式計(jì)算即可得解.
解:①如圖1,點(diǎn)A、D在BC的兩側(cè),
∵△ABD是等腰直角三角形,
∴AD=AB=×4=8,
∵∠ABC=45,
∴BE=DE=AD=×8=4,BE⊥AD,
∵BC=2,
∴CE=BEBC=42=2,
在Rt△CDE中,CD===2;
②如圖2,點(diǎn)A、D在BC的同側(cè),
∵△ABD是等腰直角三角形,
∴BD=AB=4,
過點(diǎn)D作DE⊥BC交BC的反向延長線于E,則△BDE是等腰直角三角形,
∴DE=BE=×4=4,
∵BC=2,
∴CE=BE+BC=4+2=6,
在Rt△CDE中,CD===2,
綜上所述,線段CD的長為2或2.
故答案為:2或2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RtΔABC中,∠C=90°,∠ABC=30°,AB=8,將△ABC沿CB方向向右平移得到△DEF.若四邊形ABED的面積為8,則平移距離為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種泰山旅游紀(jì)念品,4月份的營業(yè)額為2000元,為擴(kuò)大銷售量,5月份該商店對(duì)這種紀(jì)念品打9折銷售,結(jié)果銷售量增加20件,營業(yè)額增加700元.
(1)求該種紀(jì)念品4月份的銷售價(jià)格;
(2)若4月份銷售這種紀(jì)念品獲利800元,5月份銷售這種紀(jì)念品獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮計(jì)劃暑期結(jié)伴參加志愿者活動(dòng).小明想?yún)⒓泳蠢戏⻊?wù)活動(dòng),小亮想?yún)⒓游拿鞫Y儀宣傳活動(dòng).他們想通過做游戲來決定參加哪個(gè)活動(dòng),于是小明設(shè)計(jì)了一個(gè)游戲,游戲規(guī)則是:在三張完全相同的卡片上分別標(biāo)記4、5、6三個(gè)數(shù)字,一人先從三張卡片中隨機(jī)抽出一張,記下數(shù)字后放回,另一人再從中隨機(jī)抽出一張,記下數(shù)字,若抽出的兩張卡片標(biāo)記的數(shù)字之和為偶數(shù),則按照小明的想法參加敬老服務(wù)活動(dòng),若抽出的兩張卡片標(biāo)記的數(shù)字之和為奇數(shù),則按照小亮的想法參加文明禮儀宣傳活動(dòng).你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為8的正方形紙片ABCD折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,點(diǎn)A落在點(diǎn)F處,折痕為MN,若MN=4,則線段CN的長是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,點(diǎn)E在BA延長線上,點(diǎn)F在BC上,且∠CDE=2∠ADF.
(1)求證:∠E=2∠CDF;
(2)若F是BC中點(diǎn),求證:AE+DE=2AD;
(3)作AG⊥DF于點(diǎn)G,連CG.當(dāng)CG取最小值時(shí),直接寫出AE:AB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)O,O是AC的中點(diǎn),AB//DC,AC=10,BD=8.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】假山具有多方面的造景功能,與建筑、植物等組合成富于變化的景致.某公園有一座假山,小亮、小慧等同學(xué)想用一些測量工具和所學(xué)的幾何知識(shí)測量這座假山的高度來檢驗(yàn)自己掌握知識(shí)和運(yùn)用知識(shí)的能力,如圖,在陽光下,小亮站在水平地面的D處,此時(shí)小亮身高的影子頂端與假山的影子頂端E重合,這時(shí)小亮身高CD的影長DE=2米,一段時(shí)間后,小亮從D點(diǎn)沿BD的方向走了3.6米到達(dá)G處,此時(shí)小亮身高的影子頂端與假山的影子頂端H重合,這時(shí)小亮身高的影長GH=2.4米,已知小亮的身高CD=FG=1.5米,點(diǎn)G,E,D均在直線BH上,AB⊥BH,CD⊥BH,GF⊥BH,請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出假山的高度AB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com