【題目】如圖,二次函數(shù)y=x2﹣m2(m>0且為常數(shù))的圖象與x軸交于點(diǎn)A、B(AB左側(cè)),與y軸交于C.

(1)求A,B,C三點(diǎn)的坐標(biāo)(用含m的式子表示);

(2)若∠ACB=90°,求m的值.

【答案】(1) A(﹣m,0),B(m,0),C(0,﹣m2);(2) m的值為1.

【解析】

(1)令y=0,解方程x2m2=0,可求出點(diǎn)A和點(diǎn)B的坐標(biāo);令當(dāng)x=0,解方程x2m2=0,可求出點(diǎn)C的坐標(biāo);

(2)ACB=90°及二次函數(shù)的對稱性可證明△BOC是等腰直角三角形,從而可得m2=m,進(jìn)而可求出m的值.

(1)當(dāng)y=0時,x2﹣m2=0,解得x1=﹣m,x2=m,則A(﹣m,0),B(m,0),

當(dāng)x=0時,y=x2﹣m2=﹣m2,則C(0,﹣m2);

(2)∵∠ACB=90°,OC⊥AB,OA=OB,

∴∠CBO=45 ,

∴△BOC是等腰直角三角形,

∴OC=OB,

∴m2=m,解得m1=0(舍去),m2=1,

∴m的值為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,∠ABC=90,AE∥CDBCE,OAC的中點(diǎn),AB=,AD=2,BC=3,下列結(jié)論:

①∠CAE=30;②AC=2AB;③SADC=2SABE;④BO⊥CD,其中正確的是()

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=CB,AC=10,SABC=60,E為AB上一動點(diǎn),連結(jié)CE,過A作AFCE于F,連結(jié)BF,則BF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10,,點(diǎn)E是點(diǎn)D關(guān)于AB的對稱點(diǎn),MAB上的一動點(diǎn),下列結(jié)論:①∠BOE=60°;②∠CED=DOB;DMCE;CM+DM的最小值是10,上述結(jié)論中正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市用元購進(jìn)某種干果銷售,由于銷售狀況良好,超市又調(diào)撥元資金購進(jìn)該種干果,但這次的進(jìn)價比第一次的進(jìn)價提高了,購進(jìn)干果數(shù)量是第一次的倍還多千克

該種干果的第一次進(jìn)價是每千克多少元?

如果超市將這種干果全部按每千克元的價格出售,售完這種干果共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c.

(Ⅰ)若拋物線的頂點(diǎn)為A(﹣2,﹣4),拋物線經(jīng)過點(diǎn)B(﹣4,0)

①求該拋物線的解析式;

②連接AB,把AB所在直線沿y軸向上平移,使它經(jīng)過原點(diǎn)O,得到直線l,點(diǎn)P是直線l上一動點(diǎn).

設(shè)以點(diǎn)A,B,O,P為頂點(diǎn)的四邊形的面積為S,點(diǎn)P的橫坐標(biāo)為x,當(dāng)4+6≤S≤6+8時,求x的取值范圍;

(Ⅱ)若a>0,c>1,當(dāng)x=c時,y=0,當(dāng)0<x<c時,y>0,試比較ac與l的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為線段上一動點(diǎn)(不與點(diǎn),重合),在同側(cè)分別作等邊和等邊交于點(diǎn),交于點(diǎn)交于點(diǎn),連接.下列五個結(jié)論:①;②;③;④DE=DP;⑤.其中正確結(jié)論的個數(shù)是( )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)準(zhǔn)備在甲、乙兩位射箭愛好者中選出一人參加集訓(xùn),兩人各射了,他們的總成績(單位:環(huán))相同.小宇根據(jù)他們的成績繪制了如圖尚不完整的統(tǒng)計(jì)圖表,并計(jì)算了甲成績的平均數(shù)和方差(見小宇的作業(yè))

甲成績

乙成績

1a=_________

2

3)參照小宇的計(jì)算方法,計(jì)算乙成績的方差;

4)請你從平均數(shù)和方差的角度分析,誰將被選中.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,是關(guān)于的方程的兩實(shí)根,實(shí)數(shù)、、的大小關(guān)系可能是(

A. α<a<b<β B. a<α<β<b C. a<α<b<β D. α<a<β<b

查看答案和解析>>

同步練習(xí)冊答案