【題目】為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.

(1)求y與x的函數(shù)關(guān)系式;
(2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設(shè)計購買方案,使總費用最低,并求出最低費用.

【答案】
(1)

解:(1)設(shè)y與x的函數(shù)關(guān)系式為:y=kx+b,

當(dāng)0≤x≤20時,把(0,0),(20,160)代入y=kx+b中,

得: ,解得:

此時y與x的函數(shù)關(guān)系式為y=8x;

當(dāng)20≤x時,把(20,160),(40,288)代入y=kx+b中,

得: ,解得: ,

此時y與x的函數(shù)關(guān)系式為y=6.4x+32.

綜上可知:y與x的函數(shù)關(guān)系式為y=


(2)

解:(2)∵B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,

,

∴22.5≤x≤35,

設(shè)總費用為W元,則W=6.4x+32+7(45-x)=-0.6x+347,

∵k=-0.6,

∴y隨x的增大而減小,

∴當(dāng)x=35時,W總費用最低,W最低=-0.6×35+347=326(元).


【解析】(1)觀察y與x的函數(shù)圖象可得其是分段的一次函數(shù),設(shè)y=kx+b,當(dāng)0≤x≤20時,把(0,0),(20,160)代入y=kx+b中,解出k,b;當(dāng)當(dāng)20≤x時,把(20,160),(40,288)代入y=kx+b中,解出k,b;
2)可設(shè)總費用為W,由總費用W=購買B種樹苗的花費+購買A種樹苗的花費,
如果用x表示B種樹苗的數(shù)量,那么A種樹苗需要購買(45-x)棵,由(1)得=購買B種樹苗的花費關(guān)于x的取值范圍有兩種形式,則需要根據(jù)(2)中的“B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量”列出不等式組求出x的取值范圍,再根據(jù)求出的范圍考慮是否需要分類討論才能寫出W關(guān)于x的關(guān)系式,再根據(jù)函數(shù)的增減性求出W的最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程kx2﹣3x﹣1=0有兩個不相等的實根,那么k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:( ﹣3)0﹣2sin30°﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保障我國海外維和部隊官兵的生活,現(xiàn)需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:

港口

運費(元/臺)

甲庫

乙?guī)?/span>

A港

14

20

B港

10

8


(1)設(shè)從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求出最低費用,并說明費用最低時的調(diào)配方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC—CD—DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設(shè)點M運動時間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2cm,∠A=60°. 是以點A為圓心、AB長為半徑的弧, 是以點B為圓心、BC長為半徑的。畡t陰影部分的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量學(xué)校圍墻外直立電線桿AB的高度,小亮在操場上點C處直立高3m的竹竿CD,然后退到點E處,此時恰好看到竹竿頂端D與電線桿頂端B重合;小亮又在點C1處直立高3m的竹竿C1D1 , 然后退到點E1處,此時恰好看到竹竿頂端D1與電線桿頂端B重合.小亮的眼睛離地面高度EF=1.5m,量得CE=2m,EC1=6m,C1E1=3m.
(1)△FDM∽△ , △F1D1N∽△
(2)求電線桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在1,2,3,4,5這五個數(shù)中,先任意選出一個數(shù)a,然后在余下的數(shù)中任意取出一個數(shù)b,組成一個點(a,b),求組成的點(a,b)恰好橫坐標為偶數(shù)且縱坐標為奇數(shù)的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)|﹣1|+(﹣2)2+(7﹣π)0﹣( 1
(2) ÷ × +

查看答案和解析>>

同步練習(xí)冊答案