如圖,將△ABC繞點C順時針旋轉(zhuǎn)40°得△A′CB′,若AC⊥A′B′,則∠BAC等于( )

A.50°
B.60°
C.70°
D.80°
【答案】分析:已知旋轉(zhuǎn)角度,旋轉(zhuǎn)方向,可求∠A′CA,根據(jù)互余關系求∠A′,根據(jù)對應角相等求∠BAC.
解答:解:依題意旋轉(zhuǎn)角∠A′CA=40°,
由于AC⊥A′B′,由互余關系得∠A′=90°-40°=50°,
由對應角相等,得∠BAC=∠A′=50°.故選A.
點評:本題考查了圖形的旋轉(zhuǎn)變化,學生主要要看清是順時針還是逆時針旋轉(zhuǎn),旋轉(zhuǎn)多少度,難度不大,但易錯.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、如圖,將△ABC繞點A旋轉(zhuǎn)到△AB1C1,下列說法正確的個數(shù)有( 。
(1)AC=AB;(2)BC=B1C1;(3)∠BAC=∠B1AC1;(4)∠CAC1=∠BAB1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、在△ABC中,∠ACB=90°,∠A=20°,如圖,將△ABC繞點C按逆時針方向旋轉(zhuǎn)角α到∠A′C′B′的位置,其中A′,B′分別是A、B的對應點,B在A′B′上,CA′交AB于D,則∠BDC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•南昌)如圖,將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•南崗區(qū)一模)如圖,將△ABC繞點C順時針方向旋轉(zhuǎn)a得△A′B′C,A′B′與BC交于D,與AB交于E,A′C與AB交于F,若∠A′DC=2a,AC=3,AF=2,則BF的長是
5
2
5
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將△ABC繞點B旋轉(zhuǎn)到△A1B1C1的位置時,AA1∥BC,∠ABC=70°,則∠CBC1=
40°
40°

查看答案和解析>>

同步練習冊答案