已知:如圖,在△ABC中,AC=BC,以BC為直徑的⊙O交AB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F。
(1)求證:AD=BD;
(2)求證:DF是⊙O的切線;
(3)若⊙O的半徑為3,sin∠F=,求DE的長(zhǎng)。
解:(1)證明:如圖,連結(jié)CD,
∵BC是直徑,
∴∠BDC=90°,即CD⊥AB
∵AC=BC,
∴AD=BD;
(2)連結(jié)OD,
∵∠A=∠B,∠AED=∠BDC=90°,
∴∠ADE=∠DCO,
∵OC=OD,
∴∠DCO=∠CDO,
∴∠CDO=∠ADE,
由(1)得∠ADE+∠CDE=90°,
∴∠CDO+∠CDE=90°,即∠ODF=90°,
∴DF是⊙O的切線;
(3)在Rt△DOF中,
∵sin∠F=,
∴OF=5,
∵OC=3,
∴CF=5-3=2,
由(2)得∠DEA=∠ODF=90°,
∴OD∥AC,
∴△CEF∽△ODF,
,即
∴DE=。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫(xiě)作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案