已知,如圖,△ABC內(nèi)接于⊙O1,AB=AC,⊙O2與BC相切于點(diǎn)B,與AB相交于點(diǎn)E,與⊙O1相交于點(diǎn)D,直線AD交⊙O2于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)G.
求證:(1)∠G=∠AFE;(2)AB•EB=DE•AG.
證明:(1)連接BD.
∵∠FEB=∠FDB,∠FDB=∠C,
∴∠FEB=∠C.
又∵AB=AC,
∴∠ABC=∠C.
∴∠FEB=∠ABC.
∴EFCG.
∴∠G=∠AFE.

(2)連接BF.
∵∠ADE=∠ABF,∠DAE=∠BAF,
∴△ADE△ABF.
DE
BF
=
AE
AF

又∵EFCG,
AE
AF
=
AB
AG
DF
BF
=
AB
AG

∵∠BEF=∠ABC,∠ABC=∠BFE,
∴∠BEF=∠BFE.
∴BE=BF.
DE
BE
=
AB
AG
,即AB•EB=DE•AG.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O與點(diǎn)D,過(guò)點(diǎn)D的切線分別交AB、AC的延長(zhǎng)線與點(diǎn)E、F.
(1)求證:AF⊥EF.
(2)小強(qiáng)同學(xué)通過(guò)探究發(fā)現(xiàn):AF+CF=AB,請(qǐng)你幫忙小強(qiáng)同學(xué)證明這一結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知∠ABC=60°,點(diǎn)O在∠ABC的平分線上,OB=5cm,以O(shè)為圓心,3cm為半徑作圓,則⊙O與BC的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求∠P的度數(shù);
(3)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,AB=4,求線段BM、CM及弧BC所圍成的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,半圓與矩形的三邊切于A、B、F,對(duì)角線AC交⊙O于點(diǎn)E,若⊙O的直徑為8cm,則CE=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知⊙O過(guò)點(diǎn)D(4,3),點(diǎn)H與點(diǎn)D關(guān)于y軸對(duì)稱(chēng),過(guò)H作⊙O的切線交y軸于點(diǎn)A(如圖1).
(1)求⊙O半徑;
(2)sin∠HAO的值;
(3)如圖2,設(shè)⊙O與y軸正半軸交點(diǎn)P,點(diǎn)E、F是線段OP上的動(dòng)點(diǎn)(與P點(diǎn)不重合),連接并延長(zhǎng)DE,DF交⊙O于點(diǎn)B,C,直線BC交y軸于點(diǎn)G,若△DEF是以EF為底的等腰三角形,試探索sin∠CGO的大小怎樣變化?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,PA為⊙O的切線,A為切點(diǎn),割線PBC過(guò)圓心O,PA=4,PB=2.
(1)求BC、AB的長(zhǎng);
(2)若∠BAC的平分線與BC和⊙O分別相交于點(diǎn)D、E.求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知⊙O的半徑為5,直線l與⊙O相交,點(diǎn)O到直線l的距離為2,則⊙O上到直線l的距離為3的點(diǎn)的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,直線AC,BD是⊙O的切線,A,B是切點(diǎn).求證:ACBD.

查看答案和解析>>

同步練習(xí)冊(cè)答案