(2002•湖州)如圖,半徑OA=2cm,圓心角為90°的扇形OAB中,C為的中點,D為OB的中點,則圖中陰影部分的面積為    cm2
【答案】分析:連接CO,易得∠COB=45°.作CE⊥OB于點E,那么CE=CO×sin45°=.陰影部分面積為S扇形BOC-S△OCD,依面積公式計算即可.
解答:解:連接CO,易得∠COB=45°.
作CE⊥OB于點E,
那么CE=CO×sin45°=
陰影部分面積=S扇形BOC-S△OCD=-×1×=(π-).
點評:此題考查了運用切割法求圖形的面積.解決本題的關(guān)鍵是把所求的面積轉(zhuǎn)化為容易算出的面積的和或差的形式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•湖州)如圖,已知P、A、B是x軸上的三點,點A的坐標為(-1,0),點B的坐標為(3,0),且PA:AB=1:2,以AB為直徑畫⊙M交y軸的正半軸于點C.
(1)求證:PC是⊙M的切線;
(2)在x軸上是否存在這樣的點Q,使得直線QC與過A、C、B三點的拋物線只有一個交點?若存在,求點Q的坐標;若不存在,請說明理由;
(3)畫⊙N,使得圓心N在x軸的負半軸上,⊙N與⊙M外切、且與直線PC相切于D.問將過A、C、B三點的拋物線平移后能否同時經(jīng)過P、D、A三點,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2002年浙江省湖州市中考數(shù)學試卷(解析版) 題型:解答題

(2002•湖州)如圖,已知P、A、B是x軸上的三點,點A的坐標為(-1,0),點B的坐標為(3,0),且PA:AB=1:2,以AB為直徑畫⊙M交y軸的正半軸于點C.
(1)求證:PC是⊙M的切線;
(2)在x軸上是否存在這樣的點Q,使得直線QC與過A、C、B三點的拋物線只有一個交點?若存在,求點Q的坐標;若不存在,請說明理由;
(3)畫⊙N,使得圓心N在x軸的負半軸上,⊙N與⊙M外切、且與直線PC相切于D.問將過A、C、B三點的拋物線平移后能否同時經(jīng)過P、D、A三點,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2002•湖州)如圖,已知E是平行四邊形ABCD中DA邊的延長線上一點,且AE=AD,連接EC分別交AB,BE于點F、G.
(1)求證:BF=AF;
(2)若BD=12cm,求DG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:填空題

(2002•湖州)如圖,在正方形網(wǎng)格上有6個斜三角形:
①△ABC,②△CDB,③△DEB,
④△FBG,⑤△HGF,⑥△EKF.
在②~⑥中,與①相似的三角形的序號是    .(把你認為正確的都填上).

查看答案和解析>>

科目:初中數(shù)學 來源:2002年浙江省湖州市中考數(shù)學試卷(解析版) 題型:填空題

(2002•湖州)如圖,在正方形網(wǎng)格上有6個斜三角形:
①△ABC,②△CDB,③△DEB,
④△FBG,⑤△HGF,⑥△EKF.
在②~⑥中,與①相似的三角形的序號是    .(把你認為正確的都填上).

查看答案和解析>>

同步練習冊答案