【題目】如圖,在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)坐標(biāo)分別為O0,0)、A2,1)、B1,﹣2).

1)以原點(diǎn)O為位似中心,在y軸的右側(cè)畫出△OAB的一個(gè)位似△OA1B1,使它與△OAB的相似比為21,并寫出點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo);

2)畫出將△OAB向左平移2個(gè)單位,再向上平移1個(gè)單位后的△O2A2B2,并寫出點(diǎn)A2的坐標(biāo);

3)判斷△OA1B1與△O2A2B2,能否是關(guān)于某一點(diǎn)M為位似中心的位似圖形?若是,請?jiān)趫D中標(biāo)出位似中心M,并寫出點(diǎn)M的坐標(biāo).

【答案】1)見解析,A14,2);(2)見解析,A20,2);(3)見解析,M(﹣4,2).

【解析】

1)利用位似圖形的性質(zhì)得出對應(yīng)點(diǎn)位置,進(jìn)而得出答案;

2)利用平移變換規(guī)律得出對應(yīng)點(diǎn)位置,進(jìn)而得出答案;

3)連接B1B2,OO2A1A2并延長,它們交于一點(diǎn),則可判定是位似圖形,交點(diǎn)即為位似中心,進(jìn)而得出答案.

解:(1)如圖所示:OA1B1即為所求,A142);

2)如圖所示:O2A2B2即為所求,A20,2);

3)位似中心M如圖所示,M(﹣4,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y=﹣xx+3a+1是關(guān)于x的二次函數(shù),當(dāng)1≤x≤5時(shí),如果yx1時(shí)取得最小值,則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,ACCB,點(diǎn)E,F分別是ACBC上的點(diǎn),CEF的外接圓交AB于點(diǎn)Q,D

1)如圖1,若點(diǎn)DAB的中點(diǎn),求證:∠DEF=∠B;

2)在(1)問的條件下:

①如圖2,連結(jié)CD,交EFHAC4,若EHD為等腰三角形,求CF的長度.

②如圖2AEDECF的面積之比是34,且ED3,求CEDECF的面積之比(直接寫出答案).

3)如圖3,連接CQCD,若AE+BFEF,求證:∠QCD45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a0)中的x與y的部分對應(yīng)值如表

x

1

0

1

3

y

1

3

5

3

下列結(jié)論:

ac<0;

當(dāng)x>1時(shí),y的值隨x值的增大而減。

3是方程ax2+(b1)x+c=0的一個(gè)根;

當(dāng)1<x<3時(shí),ax2+(b1)x+c>0.

其中正確的結(jié)論是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 為了解蘇州市中學(xué)生的睡眠情況,應(yīng)該采用普查的方式

B. 某種彩票的中獎(jiǎng)機(jī)會是,則買張這種彩票一定會中獎(jiǎng)

C. 一組數(shù)據(jù),,,,,的眾數(shù)和中位數(shù)都是

D. 若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)EA出發(fā),沿ABBC方向運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過點(diǎn)EFEAE,交CDF點(diǎn),設(shè)點(diǎn)E運(yùn)動(dòng)路程為x,FCy,如圖2所表示的是yx的函數(shù)關(guān)系的大致圖象,當(dāng)點(diǎn)EBC上運(yùn)動(dòng)時(shí),FC的最大長度是,則矩形ABCD的面積是( 。

A. B. 5C. 6D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,直線與反比例函數(shù)的圖象交于A,B兩點(diǎn),已知A點(diǎn)的縱坐標(biāo)是2.

(1)求反比例函數(shù)的解析式.

(2)將直線沿x軸向右平移6個(gè)單位后,與反比例函數(shù)在第二象限內(nèi)交于點(diǎn)C.動(dòng)點(diǎn)Py軸正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PC之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+cx軸交于A(10),B(-3,0)兩點(diǎn),與y軸交于點(diǎn)C.

1)求該拋物線的解析式;

2)設(shè)該拋物線的頂點(diǎn)為D,求出BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,點(diǎn)D在邊AC上,BD的垂直平分線交CA的延長線于點(diǎn)E,交BD于點(diǎn)F,聯(lián)結(jié)BE,ED2EAEC

1)求證:∠EBA=∠C;

2)如果BDCD,求證:AB2ADAC

查看答案和解析>>

同步練習(xí)冊答案