【題目】如圖,在△ABC中,4AB=5AC,AD為△ABC的角平分線,點E在BC的延長線上,EF⊥AD于點F,點G在AF上,F(xiàn)G=FD,連接EG交AC于點H.若點H是AC的中點,則 的值為 .
【答案】
【解析】解:已知AD為角平分線,則點D到AB、AC的距離相等,設為h. ∵ = = = = ,
∴BD= CD.
如圖,延長AC,在AC的延長線上截取AM=AB,則有AC=4CM.連接DM.
在△ABD與△AMD中,
∴△ABD≌△AMD(SAS),
∴MD=BD= CD.
過點M作MN//AD,交EG于點N,交DE于點K.
∵MN//AD,
∴ = = ,
∴CK= CD,
∴KD= CD.
∴MD=KD,即△DMK為等腰三角形,
∴∠DMK=∠DKM.
由題意,易知△EDG為等腰三角形,且∠1=∠2;
∵MN//AD,
∴∠3=∠4=∠1=∠2,
又∵∠DKM=∠3(對頂角)
∴∠DMK=∠4,
∴DM//GN,
∴四邊形DMNG為平行四邊形,
∴MN=DG=2FD.
∵點H為AC中點,AC=4CM,
∴ = .
∵MN//AD,
∴ = ,即 ,
∴ = .
故答案為: .
方法二:
如圖,有已知易證△DFE≌△GFE,
故∠5=∠B+∠1=∠4=∠2+∠3,又∠1=∠,
所以∠3=∠B,則可證△AGH∽△ADB
設AB=5a,則AC=4a,AH=2a,
所以AG/AD=AH/AB=2/5,而 AD=AG+GD,故GD/AD=3/5,
所以AG:GD=2:3,F(xiàn)是GD的中點,
所以AG:FD=4:3
解題關鍵是作出輔助線,如解答圖所示:
第1步:利用角平分線的性質,得到BD= CD;
第2步:延長AC,構造一對全等三角形△ABD≌△AMD;
第3步:過點M作MN//AD,構造平行四邊形DMNG.由MD=BD=KD= CD,得到等腰△DMK;然后利用角之間關系證明DM//GN,從而推出四邊形DMNG為平行四邊形;
第4步:由MN//AD,列出比例式,求出 的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線相交于點O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面積為10 ,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABD中,AB=AD, 將△ABD沿BD翻折,使點A翻折到點C. E是BD上一點,且BE>DE,連結CE并延長交AD于F,連結AE.
(1)依題意補全圖形;
(2)判斷∠DFC與∠BAE的大小關系并加以證明;
(3)若∠BAD=120°,AB=2,取AD的中點G,連結EG,求EA+EG的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD為平行四邊形,AE⊥BD于E,CF⊥BD于F.
(1)求證:BE=DF;
(2)若M、N分別為邊AD、BC上的點,且DM=BN,試猜想四邊形MENF的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 在△ABC中,AC=3、AB=4、BC=5, P為BC上一動點,PG⊥AC于點G,PH⊥AB
于點H,M是GH的中點,P在運動過程中PM的最小值為( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
【答案】D
【解析】分析: 由AC=3、AB=4、BC=5,得AC2+AB2=BC2,則∠A=90°,再結合PG⊥AC,PH⊥AB,可證四邊形AGPH是矩形;連接AP,可知當AP⊥BC時AP最短,結合矩形的兩對角線相等和面積法,求出GH的值,
詳解:∵AC=3、AB=4、BC=5,
∴AC2=9,AB2=16,BC2=25,
∴AC2+AB2=BC2,
∴∠A=90°.
∵PG⊥AC,PH⊥AB,
∴∠AGP=∠AHP=90° ,
∴四邊形AGPH是矩形.
連接AP,
∴GH=AP.
∵當AP⊥BC時,AP最短,
∴3×4=5AP,
∴AP=,
∴PM的最小值為1.2.
故選D.
點睛: 本題考查了勾股定理的逆定理,矩形的判定與性質,垂線段最短,面積法求線段的長,需結合矩形的判定方法,矩形的性質以及三角形面積的知識求解;確定出點P的位置是解答本題的關鍵.
【題型】單選題
【結束】
18
【題目】計算:
(1) (2)
(3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上有A.B、C、D、E五個整數(shù)點(即各點均表示整數(shù)),且AB=2BC=3CD=4DE,若A.E兩點表示的數(shù)的分別為 -13和12,那么,該數(shù)軸上上述五個點所表示的整數(shù)中,離線段AE的中點最近的整數(shù)是( )
A. -2 B. -1 C. 0 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB內(nèi)部的一條射線,且OF平分∠AOE.
(1)若∠EOB=30°,則∠COF= ;
(2)若∠COF=20°,則∠EOB= ;
(3)若∠COF=n°,則∠EOB= (用含n的式子表示).
(4)當射線OE繞點O逆時針旋轉到如圖2的位置時,請把圖補充完整;此時,∠COF與∠EOB有怎樣的數(shù)量關系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知梯形ABCD中,AD∥BC,AB=AD(如圖所示).
(1)在下圖中,用尺規(guī)作∠BAD的平分線AE交BC于點E,連接DE(保留作圖痕跡,不寫作法),并證明四邊形ABED是菱形;
(2)若∠ABC=60°,EC=2BE.求證:ED⊥DC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年3月,我市某中學舉行了“愛我中國朗誦比賽”活動,根據(jù)學生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.根據(jù)圖中提供的信息,回答下列問題:
(1)參加朗誦比賽的學生共有人,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中,m= , n=;C等級對應扇形有圓心角為度;
(3)學校欲從獲A等級的學生中隨機選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com