【題目】解不等式組 請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái).
(Ⅳ)原不等式組的解集為 .
【答案】(Ⅰ)x>3;(Ⅱ)x≤5;(Ⅲ)3<x≤5.
【解析】試題分析:(Ⅰ)把-1移項(xiàng),合并同類(lèi)項(xiàng)即可;(Ⅱ)把5x移項(xiàng),合并同類(lèi)項(xiàng)即可;(Ⅲ)表示不等式①的解集時(shí)用空心圈,表示不等式②的解集時(shí)用實(shí)心點(diǎn);(Ⅳ)根據(jù)數(shù)軸寫(xiě)出兩個(gè)不等式解集的公共部分.
解:(Ⅰ)解不等式①,得:x>3;
(Ⅱ)解不等式②,得:x≤5;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái).
(Ⅳ)原不等式組的解集為3<x≤5,
故答案為:(Ⅰ)x>3;(Ⅱ)x≤5;(Ⅲ)3<x≤5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:
某校全校學(xué)生從學(xué)校步行去烈士陵園掃墓,他們排成長(zhǎng)為250米的隊(duì)伍,以50米/分鐘的平均速度行進(jìn),當(dāng)排頭出發(fā)20分鐘后,學(xué)校有一份文件要送給帶隊(duì)領(lǐng)導(dǎo),一名教師騎自行車(chē)以150米/分鐘的平均速度按原路追趕學(xué)生隊(duì)伍,學(xué)校離烈士陵園2千米.
(1)教師能否在排頭隊(duì)伍到達(dá)烈士陵園前送到在排頭前帶隊(duì)領(lǐng)導(dǎo)手里?
(2)送信教師和帶隊(duì)領(lǐng)導(dǎo)停下來(lái)交談了一分鐘,交談過(guò)程中隊(duì)伍繼續(xù)前進(jìn),然后領(lǐng)導(dǎo)要求送信老師馬上趕到隊(duì)尾,防止有意外情況發(fā)生,他按追趕時(shí)的平均速度需要多少時(shí)間就可以趕到隊(duì)尾;
(3)送信教師趕到隊(duì)尾后,和最后的同學(xué)一起走,送信老師還需要多少時(shí)間可到達(dá)烈士陵園.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到①的位置時(shí),求證:①△ADC≌△CEB;②DE=AD+BE;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到②的位置時(shí),求證:DE=AD﹣BE;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到③的位置時(shí),試問(wèn)DE、AD、BE具有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出這個(gè)等量關(guān)系,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。
現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。
(1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連接AC、BC.點(diǎn)P沿AC以每秒1個(gè)單位長(zhǎng)度的速度由點(diǎn)A向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q沿BO以每秒2個(gè)單位長(zhǎng)度的速度由點(diǎn)B向點(diǎn)O運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),連接PQ.過(guò)點(diǎn)Q作QD⊥x軸,與拋物線交于點(diǎn)D,與BC交于點(diǎn)E,連接PD,與BC交于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)求直線BC的函數(shù)表達(dá)式;
(2)①直接寫(xiě)出P,D兩點(diǎn)的坐標(biāo)(用含t的代數(shù)式表示,結(jié)果需化簡(jiǎn))
②在點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,當(dāng)PQ=PD時(shí),求t的值;
(3)試探究在點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,是否存在某一時(shí)刻,使得點(diǎn)F為PD的中點(diǎn)?若存在,請(qǐng)直接寫(xiě)出此時(shí)t的值與點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(3,m),B(﹣2,﹣3)是直線AB和某反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求直線AB和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫(xiě)出當(dāng)x滿(mǎn)足什么范圍時(shí),直線AB在雙曲線的下方;
(3)反比例函數(shù)的圖象上是否存在點(diǎn)C,使得△OBC的面積等于△OAB的面積?如果不存在,說(shuō)明理由;如果存在,求出滿(mǎn)足條件的所有點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn),分別在直線和上,若,,可以證明.請(qǐng)完成下面證明過(guò)程中的各項(xiàng)“填空”.
證明:∵(理由:______.)
______(對(duì)頂角相等)
∴,∴(理由:______)
∴______(兩直線平行,同位角相等)
又∵,∴,
∴______(內(nèi)錯(cuò)角相等,兩直線平行)
∴(理由:______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿(mǎn)足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A,B的坐標(biāo)分別為(-2,3)和(1,3),拋物線y=ax2+bx+c(a<0)的 頂點(diǎn)在線段AB上運(yùn)動(dòng)時(shí),形狀保持不變,且與x軸交于C,D兩點(diǎn)(C在D的左側(cè)),給出下列結(jié)論:①c<3;②當(dāng)x<-3時(shí),y隨x的增大而增大;③若點(diǎn)D的橫坐標(biāo)最大值為5,則點(diǎn)C的橫坐標(biāo)最小值為-5;④當(dāng)四邊形ACDB為平行四邊形時(shí),a=.其中正確的是( )
A. ②④ B. ②③ C. ①③④ D. ①②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com