【題目】如圖,直線)與軸分別交于,兩點(diǎn),以為邊在直線的上方作正方形,反比例函數(shù)的圖象分別過點(diǎn)和點(diǎn).,則的值為______.

【答案】-9

【解析】

CHy軸于點(diǎn)H,證明△BAO≌△CBH,可得OA=BH=-3b,OB=CH=-b,可得點(diǎn)C的坐標(biāo)為(-b,-2b),點(diǎn)D的坐標(biāo)為(2b,-3b),代入反比例函數(shù)的解析式,即可得出k2的值.

解:如圖,作CHy軸于點(diǎn)H,

∵四邊形ABCD為正方形,
AB=BC,∠AOB=BHC=90°,∠ABC=90°
∴∠BAO=90°-OBA=CBH,
∴△BAO≌△CBHAAS),
OA=BH,OB=CH
∵直線lb0)與x,y軸分別交于AB兩點(diǎn),
A3b,0),B0,b),
b0,
BH=-3b,CH=-b,
∴點(diǎn)C的坐標(biāo)為(-b-2b),
同理,點(diǎn)D的坐標(biāo)為(2b,-3b),
k1=3
∴(-b×-2b=3,即2b2=3
k2=2b×-3b=-6b2=-9
故答案為:-9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某塑料廠生產(chǎn)一種家用塑料制品,它的成本是件,售價(jià)是件,年銷售量為萬件.為了獲得更好的效益,廠家準(zhǔn)備拿出一定的資金做廣告.根據(jù)測(cè)算,若每年投入廣告費(fèi)萬元,產(chǎn)品的年銷售量將是原銷售量的倍,且之間滿足,具體數(shù)量如下表:

(萬元)

1)求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

2)如果把利潤看作是銷售總額減去成本費(fèi)用和廣告費(fèi)用,試求出年利潤(萬元)與廣告費(fèi)用(萬元)的函數(shù)關(guān)系式,并計(jì)算每年投入的廣告費(fèi)是多少萬元時(shí),所獲得的利潤最大?

3)如果廠家希望年利潤(萬元)不低于萬元,請(qǐng)你幫助廠家確定廣告費(fèi)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)分別標(biāo)有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機(jī)摸出一個(gè)小球記下數(shù)為x,小穎在剩下的3個(gè)球中隨機(jī)摸出一個(gè)小球記下數(shù)為y,這樣確定了點(diǎn)P的坐標(biāo)(x,y).

(1)小紅摸出標(biāo)有數(shù)3的小球的概率是多少?.

(2)請(qǐng)你用列表法或畫樹狀圖法表示出由x,y確定的點(diǎn)P(x,y)所有可能的結(jié)果.

(3)求點(diǎn)P(x,y)在函數(shù)y=﹣x+5圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)從點(diǎn)沿邊,勻速運(yùn)動(dòng)到點(diǎn),過點(diǎn)于點(diǎn),線段,,則能夠反映之間函數(shù)關(guān)系的圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O內(nèi)有折線DABC,點(diǎn)BCO上,DA過圓心O,其中OA8,AB12,∠A=∠B60°,則BC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(10),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( 。

A.0B.2,0C.,0D.30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-m+3x+m+10

1)求證:不論m為何值,方程都有兩個(gè)不相等的實(shí)數(shù)根;

2)若方程一根為4,以此時(shí)方程兩根為等腰三角形兩邊長,求此三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過原點(diǎn),且與軸交于點(diǎn)

1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);

2)已知為拋物線上一點(diǎn),連接,,求的值;

3)在第一象限的拋物線上是否存在一點(diǎn),過點(diǎn)軸于點(diǎn),使以,,三點(diǎn)為頂點(diǎn)的三角形與相似,若存在,求出滿足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20195亞洲文明對(duì)話大會(huì)在北京成功舉辦,引起了世界人民的極大關(guān)注,某市一研究機(jī)構(gòu)為了了解10—60歲年齡段市民對(duì)本次大會(huì)的關(guān)注程度,隨機(jī)選取了100名年齡在該范圍內(nèi)的市民進(jìn)行了調(diào)查,并將收集到的數(shù)據(jù)制成了如下尚不完整的頻數(shù)分布表、頻數(shù)分布走訪圖和扇形統(tǒng)計(jì)圖:

1)請(qǐng)直接寫出、的值及扇形統(tǒng)計(jì)圖中第3組所對(duì)應(yīng)的圓心角的度數(shù);

2)請(qǐng)補(bǔ)全上面的頻數(shù)分布直方圖;

3)假設(shè)該市現(xiàn)有10—60歲的市民300萬人,問第4組年齡段關(guān)注本次大會(huì)的人數(shù)經(jīng)銷商有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案