【題目】解下列方程

1x2+4x30

2xx+2)﹣2x0

3x26x40

4x2+x60

【答案】(1)x1=﹣2+,x2=﹣2;(2)x1=﹣2x21;(3)x13+x23;(4)x1=﹣3x22

【解析】

1)先求出b2-4ac的值,再代入公式求出即可;

2)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;

3)先求出b2-4ac的值,再代入公式求出即可;

4)先分解因式,即可得出兩個一元一次方程,求出方程的解即可.

解:(1x2+4x30,

b24ac424×1×(﹣3)=28

x

x1=﹣2+,x2=﹣2

2xx+2)﹣2x0,

xx+2)﹣(x+2)=0,

x+2)(x1)=0,

x+20,x10

x1=﹣2,x21;

3x26x40,

b24ac=(﹣624×1×(﹣4)=52

x,

x13+x23;

4x2+x60,

x+3)(x2)=0

x+30,x20,

x1=﹣3,x22

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】體育組為了了解九年級450名學生排球墊球的情況,隨機抽查了九年級部分學生進行排球墊球測試(單位:個),根據(jù)測試結(jié)果,制成了下面不完整的統(tǒng)計圖表:

組別

個數(shù)段

頻數(shù)

頻率

1

5

0.1

2

21

0.42

3

4

1)表中的數(shù)   ,   

2)估算該九年級排球墊球測試結(jié)果小于10的人數(shù);

3)排球墊球測試結(jié)果小于10的為不達標,若不達標的5人中有3個男生,2個女生,現(xiàn)從這5人中隨機選出2人調(diào)查,試通過畫樹狀圖或列表的方法求選出的2人為一個男生一個女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AC=6,BC=8,以點C為圓心,CA的長為半徑的圓與AB、BC分別相交于點D、F,求圓心到AB的距離及AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列的網(wǎng)格圖中.每個小正方形的邊長均為1個單位,在RtABC中,∠C=90°,AC=3,BC=4.

(1)試在圖中作出ABCA為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形AB1C1

(2)若點B的坐標為(-3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;

(3)根據(jù)(2)中的坐標系作出與ABC關于原點對稱的圖形A2B2C2,并標出B2、C2兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2+bx+3A(3,0),B(10)兩點,交y軸于點C

(1)求該拋物線的表達式.

(2)P是該拋物線上的動點,當△PAB的面積等于△ABC的面積時,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在下列n×n的正方形網(wǎng)格中,請按圖形的規(guī)律,探索以下問題:

1)第個圖形中陰影部分小正方形的個數(shù)為 ;

2)是否存在陰影部分小正方形的個數(shù)是整個圖形中小正方形個數(shù)的?如果存在,是第幾個圖形;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】臨近端午節(jié),某食品店每天賣出300只粽子,賣出一只粽子的利潤為1.經(jīng)調(diào)查發(fā)現(xiàn),零售單價每降0.1元,每天可多賣出100只粽子.為了使每天獲得的利潤更多,該店決定把零售單價下降m0<m<1)元,

1)零售單價降價后,每只利潤為 元,該店每天可售出 只粽子.

2)在不考慮其他因素的條件下,當零售單價下降多少元時,才能使該店每天獲取的利潤是420元,且賣出的粽子更多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(操作體驗)

如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點P,使得∠APB=30°,如圖②,小明的作圖方法如下:

第一步:分別以點A,B為圓心,AB長為半徑作弧,兩弧在AB上方交于點O

第二步:連接OA,OB;

第三步:以O為圓心,OA長為半徑作⊙O,交l;

所以圖中即為所求的點.(1)在圖②中,連接,說明∠=30°

(方法遷移)

2)如圖③,用直尺和圓規(guī)在矩形ABCD內(nèi)作出所有的點P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).

(深入探究)

3)已知矩形ABCD,BC=2AB=m,PAD邊上的點,若滿足∠BPC=45°的點P恰有兩個,則m的取值范圍為________

4)已知矩形ABCDAB=3,BC=2,P為矩形ABCD內(nèi)一點,且∠BPC=135°,若點P繞點A逆時針旋轉(zhuǎn)90°到點Q,則PQ的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應“綠色生活,美麗家園”號召,某社區(qū)計劃種植甲、乙兩種花卉來美化小區(qū)環(huán)境.若種植甲種花卉,乙種花卉,共需430元;種植甲種花卉,乙種花卉,共需260元.

1)求:該社區(qū)種植甲種花卉和種植乙種花卉各需多少元?

2)該社區(qū)準備種植兩種花卉共且費用不超過6300元,那么社區(qū)最多能種植乙種花卉多少平方米?

查看答案和解析>>

同步練習冊答案